

Hematological Parameters, Ferritin and Vitamin B₁₂ in Vegetarians

WANIDA PONGSTAPORN, M.Sc.*,
AHNOND BUNYARATAVEJ, Ph.D.**

Abstract

Hematological parameters and serum ferritin were compared between 179 vegetarians and 58 control subjects using Hematology analyzer H₃ and microparticle enzyme immunoassay, respectively. Serum Vitamin B₁₂ was also compared between 68 vegetarians and 30 control subjects using microparticle enzyme immunoassay. It was found that hemoglobin, hematocrit, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, white blood cells, neutrophils, serum ferritin and serum vitamin B₁₂ in vegetarian were significantly lower than control subjects ($P<0.05$). In addition, red cell distribution width and lymphocytes in vegetarians were significantly higher than control subjects ($P<0.05$).

There were 34 cases of iron deficiency in 179 vegetarians (19.%) which can be classified to iron depletion (4 cases), iron deficient erythropoiesis (12 cases) and iron deficiency anemia (18 cases). Vitamin B₁₂ deficiency was found in 27 cases of 68 vegetarians (40%).

Key word : Hematological Parameters, Ferritin, Vitamin B₁₂, Vegetarians, Iron Deficiency, B₁₂ Deficiency

Iron is an essential micronutrient which has several functions in the body. The main part of the iron in the body is present in the red cells as hemoglobin. In addition, iron is also an important component of myoglobin, heme enzymes, and non heme enzymes(1,2).

Iron deficiency is probably the most frequent nutritional deficiency disorder in the world.

Iron deficiency can be classified in three stages as follows :

First, iron depletion which is diagnosed by the absence of iron stores in reticuloendothelial cells in bone marrow and the low level of serum ferritin.

Second, iron deficient erythropoiesis which is diagnosed by a low level of serum ferritin, serum iron (SI) and a high level of total iron binding capacity (TIBC)

* Department of Clinical Microscopy, Faculty of Medical Technology, Rangsit University, Pathumthani 12000.

** Blood Disease Diagnosis Center, Sirikit Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.

The last stage is iron deficiency anemia which is diagnosed not only the same as the second stage but also the low level of hemoglobin because of anemia.

Vitamin B₁₂ is essential for the conversion of inactive folate to active folate for the production of nucleic acid(3).

It is already known that iron deficiency and B₁₂ deficiency can be found in some vegetarians with poor nutrition(4-6).

In Thailand, several studies have been done about iron deficiency and B₁₂ deficiency in vegetarians(8-12). However, in the present study, the behavior pattern of eating among vegetarians may change with more knowledge about nutrition.

The purpose of the research is to compare hematological parameters, serum ferritin and serum vitamin B₁₂ between vegetarians and control subjects. In addition, correlations of hematological parameters, serum ferritin and serum vitamin B₁₂ with duration of practising vegetarianism were also studied.

MATERIAL AND METHOD

Subjects

For the study of hematological parameters and serum ferritin, the subjects were classified as 179 vegetarians (62 males, 117 females) and 58 control subjects (30 males, 28 females).

For the study of serum vitamin B₁₂, the subjects were classified as 68 vegetarians (35 males, 33 females) and 30 control subjects (4 males, 26 females).

All of the control subjects were screened for α - thalassemia by PCR and β - thalassemia by HPLC. α or β - thalassemia cases, either diseases or traits were excluded as control subjects. Moreover, those who had anemia and / or a history of hematological diseases were excluded as control subjects. All of the control subjects were healthy and consumed an ordinary Thai diet. The screening of control subjects was performed at the blood disease diagnosis center, Sirikit Research Center, Ramathibodi Hospital.

Questionnaires of demographic data of vegetarians were also studied.

Specimens

All the specimens were taken after 12 hours fasting. The specimens were used as follows;

1. Two ml of EDTA blood was used for complete blood count (CBC).

2. Five ml of clotted blood was used for collection of serum to investigate for serum iron (SI), total iron binding capacity (TIBC), serum ferritin and serum vitamin B₁₂.

Laboratory Techniques

Complete blood count was investigated by Hematology analyzer H₃. (Bayer, Technicon, Tarry Town Newyork) The hematological parameters were hemoglobin (Hb), hematocrit (Hct), red blood cell count (RBC), white blood cell count (WBC), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC) and red cell distribution width (RDW).

Serum ferritin and serum vitamin B₁₂ were investigated by microparticle enzyme immunoassay (MEIA) using an automated IMX and a reagent kit from Abbott Laboratories.

Serum iron (SI) and total iron binding capacity (TIBC) were also investigated if serum ferritin was less than 12 ng/ml to classify the stage of iron deficiency.

Statistical analysis

Non-parametric tests were applied for those parameters which dispersed from normal distribution or whose sample size was less than 30. Differences of medians and ranges of individual parameters of more than two groups were statistically analysed by Kruskal-Wallis test. The Mann-Whitney U- Wilcoxon Rank Sum W test (two tailed) was used to investigate the differences between the two groups. Spherman's rank correlation was calculated for bivariants of hematological parameters. All statistical analysis were computed by Epi 6. Multiple comparison was also analysed if Kruskal-Wallis is significant(7).

RESULTS

Demographic data of vegetarians and control subjects are shown in Table 1. There were 129 lactovegetarians, 25 ovovegetarians and 22 lactoovo vegetarians. The duration of practising vegetarianism ranged from one year to forty years.

For comparison of hematological parameters, serum ferritin and serum viamin B₁₂ between vegetarians and control subjects, it was found that Hb, Hct, MCH, MCHC, WBC, neutrophils, serum ferritin and serum vitamin B₁₂, in vegetarians were statisitically lower than in the control subjects (P

Table 1. Demographic data of vegetarians and control subjects.

Demographic data		Vegetarians (n=179)		Control subjects (n=58)	
Sex	male	62	(34.6%)	30	(51.7%)
	female	117	(65.4%)	28	(48.3%)
Ages (year)	18-30	35	(19.5%)	30	(51.7%)
	30-40	59	(33%)	19	(32.8%)
	> 40	85	(47.5%)	9	(15.5%)
Types of vegetarians					
	Lactovegetarians	132	(73.7%)		
	Ovovegetarians	25	(14%)		
	Lactoovo vegetarians	22	(12.3%)		
Duration of practising vegetarianism		13*	(1-40)**		
	1-5 years	32	(18.5%)		
	6-10 years	32	(18.5%)		
	11-15 years	56	(32.4%)		
	16-20 years	36	(20.8%)		
	21-40 years	17	(9.8%)		

* mean

** ranges

Table 2. Median and ranges of hematological parameters serum ferritin and serum vitamin B₁₂ in vegetarians.

Hematological parameters	Vegetarians (n=179)	Control subjects (n=68)	P value
Hb (g/dl)	12.7* (7.1-16.7)	14 (10.5-16.8)	<0.001
Hct (%)	40.6* (21.5-51.4)	42.7 (31.8-50.8)	0.007
MCV (fl)	92.3 (58-107.4)	92.25 (51.7-103.8)	0.83
MCH (pg)	28.8* (18.4-33.3)	30.15 (22.3-33.9)	<0.001
MCHC (g/dl)	31.2* (29.4-34.3)	32.2 (28.9-36.1)	<0.001
RDW (%)	14.4* (12.7-23.7)	13.5 (12.3-20.1)	<0.001
RBC (x10 ¹² /l)	4.46 (3.3-6.68)	4.6 (3.53-6.54)	0.24
WBC (x10 ⁹ /l)	5.57* (2.49-11.53)	7.41 (6.25-11.1)	<0.001
Plt (x10 ⁹ /l)	251.5 (102-367)	245 (28-567)	0.702
Neutrophil (%)	53.4* (27.2-78.5)	58.2 (41.4-77.9)	<0.001
Lymphocytes (%)	33.8* (14.2-55.2)	27.8 (12.7-46.9)	<0.001
Ferritin (ng/ml)	24.3* (3.41-563.8)	77.08 (12.68-457.35)	<0.001
Vitamin B ₁₂ (pg/ml)**	202* (75-2000)	470.5 (183-1432)	<0.001

* statistically significant differences from control subjects

Mann-Whitney U Wilkoxon Rank Sum W test (two tailed)

** for vitamin B₁₂, there were 68 cases of vegetarians and 30 cases of control subjects

<0.05). In addition, RDW and lymphocytes in vegetarians were statistically higher than the control subjects ($P<0.05$) as shown in Table 2.

RBC, and platelets were not statistically significantly different between vegetarians and control subjects ($P>0.05$), as shown in Table 2. In addition, monocytes and basophils in vegetarians were not statistically significantly different from the control subjects. ($p>0.05$) (data not shown)

Hematological parameters, serum ferritin and serum vitamin B₁₂ were also compared in vegetarians with different years of practising vegetarianism as shown in Table 3. It was found that there were no statistically significant differences in all hematological parameters, serum ferritin and serum vitamin B₁₂ among various durations of practising vegetarianism. However, many parameters were statistically significantly different between each group of different duration years of practising vegetarianism and the control subjects, except the group with 21-40 years of practising vegetarianism,

as shown in Table 3. It may be the reason that the group with 21-40 years of practising vegetarianism was too small for statistical comparison.

Hematological parameters, serum ferritin and serum B₁₂ were not statistically significantly correlated with duration of practising vegetarianism, as shown in Table 4.

Hematological parameters were not statistically correlated with serum ferritin in 34 cases of iron deficiency. However, high percentages of microcyte and hypochromia were found in some cases of iron deficiency anemia who had a low level of ferritin and hemoglobin. (data not shown)

In addition, hematological parameters were not statistically correlated with serum vitamin B₁₂ in 27 cases of B₁₂ deficiency. (data not shown)

In conclusion, there were 34 cases of iron deficiency from 179 vegetarians (19%) which can be classified into 3 stages of iron deficiency. In addition, there were 27 cases of vitamin B₁₂ deficiency from 68 vegetarians (40%), The classifica-

Table 3. Median and ranges of hematological parameters in control and vegetarians according to the duration of vegetarianism.

Hematological parameters	Control (n=58)	Duration of practising vegetarianism (years)				
		1-5 (n=32)	6-10 (n=32)	11-15 (n=56)	16-20 (n=36)	21-40 (n=17)
Hemoglobin (g/dl)	14 (12.8-16.8)	13 (7.1-16)	12.6* (10.1-16.1)	12.8* (9.5-16.1)	12.8* (10.5-15.3)	12.7 (10.2-16.7)
Hct (%)	42.7 (31.8-50.8)	41.35 (23.4-50.4)	40.65 (31.3-48)	40.5 (31.5-51.4)	40.75 (34.7-50.1)	40.1 (30.7-48.7)
MCV (fl)	92.25 (51.7-103.8)	88.4 (62.3-107.4)	90.75 (63.7-104.1)	92.95 (58-104.3)	95.3 (77.4-106.9)	92.6 (64.6-103.8)
MCH (pg)	30.15 (22.3-33.9)	27.45* (18.9-33.1)	28.25* (21-32.4)	28.8* (18.4-33.1)	29.5 (23.8-33.3)	29.4 (21.5-31.7)
MCHC (g/dl)	32.2 (28.9-36.1)	31.3 (30.1-32.9)	31.25 (29.8-33.5)	31.3* (29.8-32.7)	31* (29.4-33.8)	31.3 (29.6-34.3)
RDW (%)	13.5 (12.3-20.1)	14.85* (13.4-23.7)	14.65* (13.1-17.1)	14.5* (13.0-18.3)	14.45* (12.8-17.5)	13.9 (13.3-15.6)
RBC (x10 ¹² /l)	4.595 (3.53-6.54)	4.75 (3.3-6.47)	4.42 (3.83-5.81)	4.47 (3.47-6.68)	4.44 (3.85-5.65)	4.45 (3.38-5.26)
WBC (x10 ⁹ /l)	7.41 (2.9-11.13)	5.74* (2.85-11.53)	5.89* (3.22-9.75)	5.56* (2.87-8.32)	5.64* (2.49-10.42)	5.33 (2.77-7.41)
Plt (x10 ⁹ /l)	251.5 (102-367)	239 (71-432)	257 (169-382)	250 (53-567)	249 (28-358)	256 (110-306)
Ferritin (ng/ml)	77.08 (12.6-457.35)	20.74* (3.41-194.8)	25* (4.7-94.71)	22.67* (4.3-563.8)	26.32* (5.5-206.4)	35.3 (18.8-203.21)
Vitamin B ₁₂ (pg/ml)	470.5 (n=28) (183-1432)	202* (n=21) (75-20000)	173* (n=8) (128-391)	181* (n=19) (109-1163)	305.5 (n=12) (99-1213)	233 (n=5) (170-1610)

* statistically significant different from control subject. ($p<0.05$)
Kruskal Wallis test and multiple comparison.

Table 4. The correlation of hematological parameters, serum ferritin and serum vitamin B₁₂ with duration of practicing vegetarianism.

Hematological Parameter	γ
Hb (g/dl)	-0.04
Hct (%)	-0.03
ferritin (ng/ml)	0.10
MCV (fL)	0.15
MCH (pg)	0.14
MCHC (g/dl)	-0.03
RBC ($\times 10^{12}/l$)	-0.18
WBC ($\times 10^9/l$)	-0.13
Plt ($\times 10^9/l$)	-0.02
RDW (%)	-0.22
Vitamin B ₁₂ (pg/ml)	0.22

tion of these cases is shown in Table 5.

DISCUSSION

From this study, almost all the cases were derived from Santi-Asoke (166 cases). The remained were derived from Pho Man Arama which is Chinese vegetarians and all of them were male (13 cases). The duration of practising vegetarianism from Santi-Asoke was longer than Pho Man Arama. However, all cases were true vegetarians.

It was found, in this study, that Hb and Hct in vegetarians were statistically lower than the control subjects which is not in accordance with Tungtrongchitr et al(8). In cases of iron deficiency, the lower Hb concentration may be due to the imbalance of equilibrium between inhibitor and enhancer of iron absorption. In Santi-Asoke a high consumption of citrus fruits leads to an excess intake of vitamin C(8). So, the reason for the imbalance of iron may be due to the high intake of fibre, tannate as well as phytate which inhibits iron absorption. Moreover, the lower Hb concentration was

seen in some cases of B₁₂ deficiency. In these cases, it may be due to the impairment of Hb synthesis because the deficiency in specific enzyme is due to inadequate protein intake of vegetarians(12).

MCH and MCHC were statistically lower than the control subjects because Hb which is the content of red blood cells was low in the vegetarians.

RDW in the vegetarians was statistically higher than the control subjects because marked anisocytosis can be found in both iron deficiency and B₁₂ deficiency.

Serum ferritin levels in the vegetarians were statistically lower than the control subjects which is in accordance with previous studies(8-11), it may be due to high intakes of inhibitor of iron absorption.

Surprisingly, WBC in the vegetarians was statistically lower than the control subjects, which is not in accordance with previous studies(8-11). Neutrophils in the vegetarians were statistically lower than the controls but lymphocytes were statistically higher than the controls. These results are not in accordance with the previous study(8) which found that lymphocytes in vegetarians were statistically lower than the control subjects. The result of neutropenia may be the sign of ineffective granulopoiesis in bone marrow which may be due to megaloblastic changes in cases of B₁₂ deficiency.

Serum vitamin B₁₂ levels in the vegetarians were statistically lower than the control subjects which is in accordance with previous studies (8-12). There were fewer males than females as control subjects of serum B₁₂ in this study (4 males and 26 females). However, the serum vitamin B₁₂ levels were compared in the total controls, not separated by sex. In addition, it was found from previous studies that serum B₁₂ levels in male and female controls were not significantly different(8,12).

Tungtrongchitr et al(12) reported that basophilic stippling can be found in most cases of B₁₂

Table 5. The classification of vegetarians in various stages of iron deficiency and B₁₂ deficiency.

State of deficiency	Lactovegetarians	Lactoovo-vegetarians	Vegan
1. Iron depletion (male 1, female 3)	3	-	1
2. Iron deficient erythropoiesis (male 3, female 9)	7	2	3
3. Iron deficiency anemia (male 1, female 17)	10	6	2
4. B ₁₂ deficiency (male 14, female 13)	19	4	4

deficiency. Unfortunately, we couldn't find any basophilic stippling in B₁₂ deficiency, because we used dip-quick which is the rapid staining method instead of the standard method of Wright's stain.

For comparison of hematological parameters, serum ferritin and serum vitamin B₁₂ in various groups with different years of practising vegetarianism, no significant differences of all parameters among various groups with different years of practising vegetarianism were found. This result is in accordance with the correlation study, of hematological parameters, serum ferritin and serum vitamin B₁₂ with duration of practising vegetarianism, in which no correlation was found.

However, significant differences were found in many parameters between each group of duration years of practising vegetarianism and control subjects. First, Hb levels in groups of more than five years were statistically lower than the control subjects ($p<0.05$). The comparison of MCH was not in accordance with Hb. It may be due to the imprecision of MCH in Technicon H₃ which calculates MCH from Hb and RBC count. MCHC levels after more than 10 years of practising vegetarianism were statistically lower than the control subjects. MCHC results correlated with the Hb level because Technicon H₃ can measure Hb content in RBC directly. MCHC levels were significantly decreased after more than 10 years, while Hb levels were significantly decreased after more than 5 years. This means that Hb is a more sensitive index than MCHC.

Serum ferritin levels in all duration years of practising vegetarianism were lower than the control subjects because ferritin is the most sensitive index for iron deficiency before anemia can be present(2).

RDW levels in vegetarians were statistically higher than the control subjects in all durations of practising vegetarianism because anisocytosis can be found in both B₁₂ and iron deficiency.

Serum vitamin B₁₂ levels were statistically lower than the controls in those who practised vegetarianism for less than 15 years. This result supports the findings of previous studies that vitamin B₁₂ deficiency was mostly found in persons practising vegetarianism for 6-10 years(8,12). However, we found that a slight increase in serum vitamin B₁₂ was observed in vegetarians practising vegetarianism for more than 15 years, rather than 10

years for the previous study. It may be due to the bigger sample size and details of classification in this study. Although dietary intakes of vitamin B₁₂ were low, the vegetarians can compensate for this by utilizing vitamin B₁₂ produced by their normal gut flora. Adults who choose a strict vegetarianism diet lacking in vitamin B₁₂ generally have enough vitamin B₁₂ stored in their liver to supply vitamin B₁₂ for 5-6 years before deficiency symptoms set in(10). A high serum vitamin B₁₂ deficiency can therefore be observed only in vegetarians who have been practising vegetarianism for >6 years.

WBC in all duration years of practising vegetarianism was statistically lower than the control subjects. The explanation for this in vegetarians is unclear.

From this study, cases of iron deficiency, may be due to the intake of food that suppresses iron absorption (such as tannate or phytate). In cases of B₁₂ deficiency, it is probable that they intake insufficient soy bean or soy bean products which are the only major source of vitamin B₁₂ in vegetarians.

No correlation was found between hematological parameters and ferritin in 34 cases of iron deficiency because stage 1 (4 cases) and stage 2 (12 cases), with normal red blood cells, were included in these cases. There were only 18 cases of iron deficiency anemia but the number of cases was too small for correlation study. However, high percentages of microcyte and hypochromia were found in some cases with low serum ferritin and hemoglobin.

In cases of vitamin B₁₂ deficiency, there was no correlation between hematological parameters and vitamin B₁₂ level. It may be that these cases had a mild form of B₁₂ deficiency because hemoglobin and per cent macrocyte were normal.

From this study we can conclude that the incidence of iron deficiency and B₁₂ deficiency was much lower than a previous study(12) because of more advanced knowledge about nutrition in Santi-Asoke. Nevertheless, iron deficiency and B₁₂ deficiency was found in some cases.

ACKNOWLEDGEMENTS

The authors wish to thank Miss Chutima Asoketrakul at Santiasoke, Klongkum, Bangkok and Pho Man Arama, Yannawa, Bangkok for their assistance with the vegetarian subjects.

REFERENCES

1. Coleman M. Hemoglobin and iron metabolism. In: Rodak Bernadette F., eds. Diagnostic hematology. Philadelphia: WB Saunders, 1995: 97-9.
2. LaBounty Lynn A. Anemia of abnormal iron metabolism. In: Lotspeich-Steininger Cheryl A., eds. Clinical hematology. Principle procedures and correlations. Philadelphia, J.B. Lippincott Company 1992: 171-7.
3. Lotspeich-Steininger Cheryl A. Anemia of abnormal nuclear development., In: Lotspeich- Steininger Cheryl A., eds. Clinical hematology. Principle procedure and correlations. Philadelphia J.B. Lippincott. Company 1992: 154-60.
4. Herbert J. Relationship of vegetarian to child growth in South India Am J Clin Nutr 1985; 42: 1246-54.
5. Bindra GS, Gibson RS. Iron status of predominantly lacto-ovo-vegetarian East Indian immigrant to Canada: a model approach. Am J Clin Nutr 1986; 44 : 643-52.
6. Zmora E, Gorodisher R, Bar-ziv J. Multiple nutritional deficiency in infants from a strict vegetarian community. Am J Dis Child 1979; 133: 141-4.
7. Siegel S, Castellan Jr. Nj In: Anker James D., eds. Non- parametric statistics for the behaviral sciences, Second edition. Singapore. Mc. Graw-Hill Inc 1988: 213-5.
8. Tungtrongchitr R, Pongpaew P, Prayurahong B, et al. Vitamin B12, Folic Acid and Hematolgical status of 132 thai vegetarians. Internat J Vit Nutr Res 1993; 63: 201-7.
9. Chitchumroonchokechai C. Nutrient intake and health status of Thai vegans : Trace elements and vitamin B12. A Thesis submitted in partial fulfillment of requirements for the degree of Master of Science (Nutrition), Mahidol University 1987.
10. Chitchamroonchokechai C, Phuwastein P, Sirichakwai PP, Kongkachuchai R. Vitamin B12 status in Thai adult vegetarians. J Nutr Assoc Thailand 1988; 22: 107-14.
11. Puwastein P, Sirichakwai PP, Valaipatchara U, Chitchamroonchokechai C, Vamaputla M, Rujipratch S. Nutritive value of vegetarian menu. J Nutr Assoc Thailand 1988; 22: 209-25
12. Tungtrongchitr R, Chanjanakijskul S, Pongpaew P, et al. Basophilic stippling: hematological effects on vegetarians. J Nutr Assoc Thailand 1989; 23: 177-84.

พารามิเตอร์ทางโลหิตวิทยา, ระดับของเฟอริติน และวิตามินบีลิบส่องในชีรัมของผู้ที่ทานมังสวิรติ

วนิดา พงศ์สถาพร, ว.ท.ม.*, อานันท์ บุณยะรัตตเวช, บ.ร.ด.**

ได้มีการเปรียบเทียบพารามิเตอร์ทางโลหิตวิทยา และระดับของเฟอริตินในชีรัมของผู้ที่ทานมังสวิรติ 179 ราย เทียบกับคนปกติ 58 ราย โดยใช้เครื่อง Technicon H₃ ในการหาพารามิเตอร์ทางโลหิตวิทยา และใช้วิธี Microparticle enzyme immunoassay ในการหาระดับของเฟอริตินในชีรัม พบว่า ระดับของชีรัมโลกลิน, อีมาโนคลริต, MCH, MCHC, ค่าเม็ดเลือดขาว, เม็ดเลือดขาวชนิดนิวโตรอฟิล, ระดับของเฟอริติน ในผู้ที่ทานมังสวิรติ มีค่าต่ำกว่าคนปกติอย่างมีนัยสำคัญทางสถิติ ($P<0.05$) แต่ RDW และเม็ดเลือดขาวชนิดลิมโฟไซด์ มีค่าสูงกว่าคนปกติอย่างมีนัยสำคัญทางสถิติ ($P<0.05$) นอกจากนี้ ได้มีการหาระดับของวิตามินบีลิบส่องในชีรัมของผู้ที่ทานมังสวิรติ 68 ราย เทียบกับคนปกติ 30 ราย โดยวิธี Microparticle enzyme immunoassay พบว่า ระดับของวิตามินบีลิบส่องในผู้ที่ทานมังสวิรติ มีค่าต่ำกว่าคนปกติอย่างมีนัยสำคัญทางสถิติ ($P<0.05$)

จากการศึกษาวิจัยครั้งนี้พบว่าผู้ที่ทานมังสวิรติที่อยู่ในภาวะขาดเหล็กมีจำนวนทั้งสิ้น 34 ใน 179 ราย (19.%) แบ่งเป็นระยะของการพร่องเหล็กเก็บสะสม 4 ราย, ระยะของการพร่องเหล็กที่จะนำไปใช้ในการสร้างเม็ดเลือดแดง 12 ราย และระยะที่เป็นโลหิตจางเนื่องจากการขาดเหล็ก 18 ราย และพบว่าผู้ที่ทานมังสวิรติที่อยู่ในภาวะขาดวิตามินบีลิบส่อง มีจำนวนทั้งสิ้น 27 ใน 68 ราย (40%)

ค่าสำคัญ : พารามิเตอร์ทางโลหิตวิทยา, เฟอริติน, วิตามินบีลิบส่อง, ผู้ที่ทานมังสวิรติ, ภาวะขาดเหล็ก, ภาวะขาดวิตามินบีลิบส่อง

* ภาควิชาจุลทรรศนศาสตร์คลินิก, คณะเทคนิคการแพทย์, มหาวิทยาลัยรังสิต, ปทุมธานี 12000

** หน่วยวินิจฉัยโรคเลือด, ศูนย์การแพทย์ลิริกิตต์, คณะแพทยศาสตร์ โรงพยาบาลรามาธิบดี, มหาวิทยาลัยมหิดล, กรุงเทพฯ 10400