

Amifostine and Hematologic Effects

CHANTRAPA SRISWASDI, M.D.*,
SAENGSUREE JOOTAR, M.D.**,
FRANCIS J. GILES, M.D.***

Abstract

Amifostine is a protective agent of normal tissue from adverse effects of radiochemotherapy. It is the prodrug that is dephosphorylated by alkaline phosphatase on plasma membrane into the active form named WR-1065. More than 90 per cent of the drug is cleared from plasma in 6 minutes and the peak tissue concentration is 10-30 minutes after intravenous administration. Amifostine has the selective property to protect normal tissue but not cancer cells by mainly scavenging free radicals induced by radiation and chemocytotoxic agents. Both preclinical and clinical studies of this drug provide the significant protection of hematopoietic progenitors from a broad range of cytotoxic agents such as cyclophosphamide, cisplatin, vinblastine, carboplatin, mitomycin-C, fotemustine, doxorubicin, daunorubicin and radiation as well. Moreover, this drug can protect other normal organs or tissues including kidney, salivary gland, liver, heart, lung and small intestine. Amifostine is quite safe, the two major side effects are vomiting and hypotension, and the minor effects are flushing, sneezing, dizziness, chills, metallic taste etc. The drug was approved by the FDA of U.S.A. for use as a cytoprotectant in cyclophosphamide and cisplatin treatment for advanced ovarian cancer and non small cell lung cancer.

Key word : Amifostine, Cytoprotectant

SRISWASDI C, et al
J Med Assoc Thai 2000; 83: 374-382

Investigators and clinicians have attempted to develop cytotoxic agents and regimens to eliminate malignant diseases. The cytotoxic agents affect

not only tumor cells but also normal tissues. The nonselective effects influence the quality of life of patients and also limit the dose of chemotherapy

* Department of Medicine, Pramongkutkla Hospital, Bangkok 10400,

** Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Bangkok 10400, Thailand.

*** Department of Leukemia, M.D. Anderson Cancer Center, Houston, Texas 77030, U.S.A.

and radiation. In the last decade, several agents have been developed to protect or rescue normal tissues from these effects such as dextrazoxane (cytoprotectant against cardiotoxicity), mesna (prevent hemorrhagic cystitis), amifostine (broad-spectrum cytoprotectant), leucovorin (rescue agent for high-dose methotrexate), and growth factors (erythropoietin, G-CSF, GM-CSF)(1-3).

The ideal properties of cytoprotectants are : first, selectivity, it can protect healthy or normal tissues from the toxicity of antitumor therapies without protecting the tumor cells; second, broad-spectrum ability, it should protect numerous normal tissues from cytotoxic therapy and have protection against a wide variety of cytotoxic agents; third, no or acceptable side effects(3,4). One of the cytoprotectants studied extensively is amifostine. Amifostine, originally known as WR (Walter-Reed)-2721, was developed initially during the Cold War by the Walter Reed Army Institute as a radio-protectant(4-6). This drug was subsequently studied for its potential role in therapeutic radiation, as well as chemotherapy especially in alkylating agents,

organoplatinum agents and anthracyclines(1,5,7-9). This review examines the cytoprotective property of amifostine, particularly its hematologic aspects, mechanism of action, side effects and guidelines for treatment.

Mechanism of action

Amifostine, a phosphorylated prodrug, is rapidly dephosphorylated by alkaline phosphatase (a plasma membrane enzyme) into the free thiol WR-1065 that is its active form(10-12). WR-1065 is consequently oxidized to the symmetrical disulfide of WR-1065 (WR-33278) or the mixed disulfides with endogenous thiols and thiol containing proteins (Fig. 1)(4,10,13).

This drug is rapidly cleared from plasma, less than 10 per cent of the drug remains in the plasma 6 minutes after intravenous administration(6,11,14,15). The rapid disappearance of amifostine from the plasma may be due to its rapid conversion into WR-1065 that is also rapidly cleared from the circulation by its fast uptake in normal tissues or its conversion to disulfides(11,16,17).

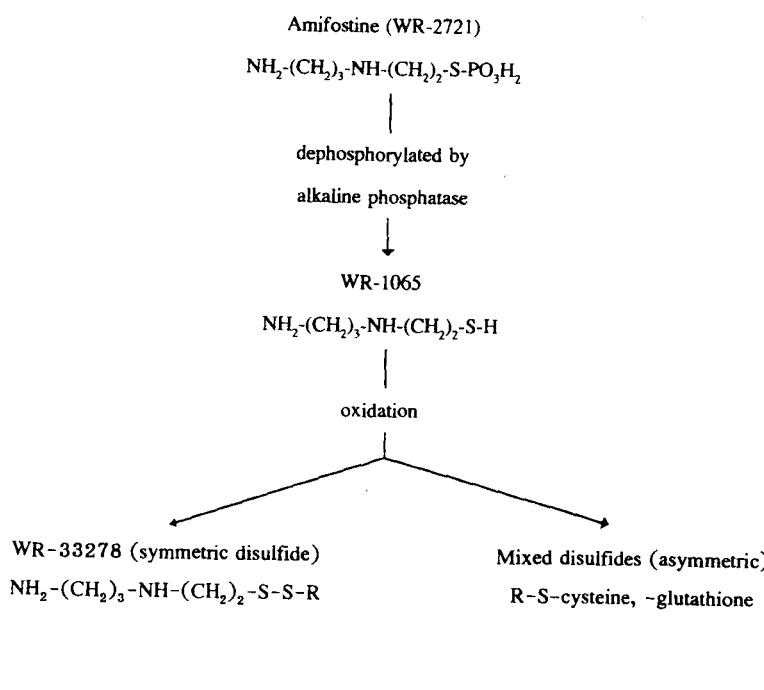


Fig. 1. Amifostine metabolism.

The peak tissue concentration of WR-1065 is achieved 10-30 minutes after injection(15,16).

WR-1065, the active form of amifostine, produces cytoprotective effects by binding and detoxifying directly to the active forms of chemocytotoxic drugs, scavenging free radicals, and donating hydrogen ions for DNA repair(3,4,6,18,19). Free radicals are thought to be a factor of toxicity induced by radiation and some chemocytotoxic drugs(5-7,9).

Amifostine has the unique ability to protect normal tissues but not tumor cells from radiation or chemotherapy(3,7,10,20-24). The selective cytoprotection occurs from several mechanisms as follows : first, the concentration of membrane-bound alkaline phosphatase is 275-fold greater in normal than in tumor tissues; second, this drug is absorbed by active transport in normal tissues but passive diffusion in tumor cells; third, the lower blood supply in tumors compared with normal tissues may result in less delivery of the drug to tumor cells; and fourth, the neutral pH of normal tissue results in more uptake of the drug than the acidic environment of tumor tissue(1,3,4,6,25). The result of these mechanisms causes higher drug concentration in normal organs than in tumor tissue by 50-100 fold, the organs include kidney, salivary gland, bone marrow, liver, heart, lung and small intestine, but has low concentration in brain and spinal cord because of the negligible uptake of amifostine across the blood brain barrier(4,5,7,10,25).

Evidence of hematologic protection

The hematologic toxicity is an important limitation for chemotherapy and radiation therapy. This toxicity is usually manifested as neutropenia and thrombocytopenia. As the hematopoietic growth factors (GM-CSF, G-CSF) reduce the duration of neutropenia, infection event and allow modest escalation of chemotherapy, these agents can not affect the thrombocytopenic problem. Moreover, some data showed that the efficacy of these agents decreased with repeated courses of chemotherapy(2,27,28). In contrast, both preclinical and clinical studies have shown that amifostine can reduce cytotoxic therapy induced neutropenia and thrombocytopenia(3,4,6,7,26).

In extensive preclinical studies, amifostine has shown the significant protection of hematopoietic progenitors from a broad range of cytotoxic agents, including daunorubicin, mitoxantrone, paclitaxel, cisplatin, doxorubicin, diaziquone, carbopla-

tin, cyclophosphamide, nitrogen mustard, melphalan, mitomycin-C, BCNU, 5-FU and radiation as well(4, 8,29-35). In 1981, Wasserman *et al*(30) demonstrated the cytoprotective effects of amifostine against mouse bone marrow colony forming units from cytotoxic agents and radiotherapy. They showed the dose-modifying factors (the ratio that was determined from the CFU survival curve, it has protection if the ratio is greater than 1) for bone marrow protection it was 4.6, 3.2, 2.4, 1.5, 2.7, 2.4 for nitrogen mustard, cisplatin, cyclophosphamide, BCNU, 5-FU and radiation, respectively. List *et al* showed multilineage cytoprotection of amifostine *in vitro*(8). It was able to protect CFU-GEMM against cytotoxicity from daunorubicin, mitoxantrone and paclitaxel, and also protect BFU-E against toxicity from doxorubicin, mitoxantrone, paclitaxel, cisplatin and diaziquone(8). Van Laar *et al* evaluated the cytoprotective effect of amifostine on the combination of carboplatin and 5-FU in an animal trial by intraperitoneal injection of 200 mg/kg amifostine 5 minutes prior to the chemotherapy administration, they found that this drug had a protective ability against carboplatin and 5-FU induced thrombocytopenia(33).

According to the previous preclinical studies, the results have influenced further clinical trials of amifostine as a cytoprotective agent.

Phase I study was conducted by Kligerman *et al*(36) to determine a maximum tolerated dose or an acceptable tolerated dose and side effects of amifostine. One hundred twenty-one patients with advanced malignancies received a single dose of amifostine (escalated from 25 to 1,330 mg/m²) before cyclophosphamide, nitrogen mustard, cisplatin or radiation. From this study, it was found that a maximum tolerated dose had not been reached but an acceptable tolerated dose was 740 mg/m². The most serious and life-threatening side effect was hypotension, however, only 5 per cent of patients had serious hypotension (drop in systolic blood pressure more than 20 mmHg for at least 5 minutes). The second important side effect was emesis. Both hypotension and emesis caused incomplete infusion of amifostine in about 6 per cent of the total patients. There was no death related toxicity. Kligerman *et al* did a further phase I trial of multiple doses of amifostine before protracted fractionated radiation therapy(37). They concluded that the maximum tolerated dose of this drug for fractionated radiation was 340 mg/m².

Glick et al conducted phase I controlled trials of amifostine and cyclophosphamide(38). In this study, fifteen patients received amifostine 450-1,100 mg/m² prior to cyclophosphamide 1,200-1,800 mg/m² and 4 weeks later (after full hematologic recovery), they were subsequently treated with cyclophosphamide alone. With amifostine pretreatment, eleven of fifteen patients (73%) had improved nadir WBC counts ($p=0.008$) and seven of eleven (64%) who had nadir differential counts performed had improved nadir granulocyte counts ($p=0.05$). The mean WBC nadir with combined drugs was 2,700/mm³ and 1,800/mm³ in cyclophosphamide alone ($p=0.008$). The mean granulocyte nadir with these combinations was 1,274/mm³ compared to 765/mm³ with cyclophosphamide alone.

Constine et al(39) provided data from a phase I/II trial. They showed that patients with amifostine given prior to hemibody irradiation (HBI) had a more rapid and complete return of WBC than the control group (HBI alone) and no life-threatening toxicity in the amifostine group compared to 2 life-threatening events in the control group. However, there was no difference in the platelet nadir and platelet recovery in the groups. From this study, the authors suggested that the appropriate dose of amifostine was 750-900 mg/m²(39).

In multiple phase I studies, the dose of amifostine was established at 740-910 mg/m² in a single dose regimen and 340 mg/m² in a multiple dose regimen(37-41). Amifostine not only has hematologic protection but also other organ protection from cytotoxic agents such as nephrotoxicity and peripheral neuropathy from cisplatin, and mucositis from cisplatin plus radiation(41,42). The results of preclinical and phase I trials suggest that this drug is quite safe and has potential broad spectrum cytoprotection against many cytotoxic agents.

Aviles et al(23) conducted a clinical trial of amifostine with intermediate doses of cyclophosphamide. Forty patients with previously untreated high-risk diffuse large cell lymphoma were randomly assigned to four groups (10 patients in each group). The group 1 patients received amifostine 910 mg/m² prior to cyclophosphamide 1,500 mg/m² for two cycles. Group 2 and group 3 patients received amifostine/cyclophosphamide only on one cycle and cyclophosphamide alone on the other cycle (their own control). The last group of patients received cyclophosphamide alone on two cycles.

The patients who were treated with amifostine had fewer days of severe granulocytopenia (grade III or IV). No infection related to granulocytopenia was observed in amifostine plus cyclophosphamide compared to four in cyclophosphamide alone. The mean delay to treatment was 0.8 days in amifostine plus cyclophosphamide and 6.3 days in cyclophosphamide alone(23). Glover et al(43) reported data from a phase II trial of the effect of amifostine on cyclophosphamide-induced hematotoxicity. Twenty-one patients with diverse malignancies were treated initially with 1,500 mg/m² of cyclophosphamide alone and 4 weeks later, after complete hematologic recovery, patients received 740 mg/m² of amifostine intravenous infusion over 15 minutes, then followed 15 minutes later by the same dose of cyclophosphamide. The mean WBC nadir was 1,760/mm³ and 2,500/mm³ in cyclophosphamide alone and amifostine plus cyclophosphamide, respectively ($p<0.0005$). The mean granulocyte nadir was also lower in cyclophosphamide alone compared to amifostine pretreatment (541/mm³ vs 1,247/mm³, $p<0.0005$). Although thrombocytopenia was found only in patients with cyclophosphamide alone (9.5% vs 0%), this difference was not statistically significant(43).

Amifostine has been shown to decrease both the degree and duration of granulocytopenia in cyclophosphamide therapy, and also decreases non-hematologic toxicities in cisplatin therapy such as nephrotoxicity, and neurotoxicity(44-46). The results led to development of phase III trials of amifostine in protection against toxicities induced by a combination of these drugs(21). Kemp et al(21) randomized 242 women with advanced ovarian cancer to receive six cycles of cyclophosphamide 1,000 mg/m² and cisplatin 100 mg/m² (CP) every 3 weeks with or without amifostine 910 mg/m² given prior to chemotherapy. One hundred and twenty two patients were randomized to receive amifostine plus CP and 120 patients were randomized to receive CP alone. The two groups were well matched with respect to age, race, FIGO stage, extent of residual disease and performance status. The amifostine plus CP group had a significant decrease in treatment discontinuation due to hematologic toxicity ($p = 0.016$). Pretreatment with amifostine reduced the incidence of neutropenia associated with fever and/or infection requiring antibiotics ($p=0.005$), days in hospital ($p=0.019$) and days on antibiotics ($p=0.031$). Additionally, pretreatment with amifostine resulted

Table 1. Clinical trials in Amifostine.

Study design	Disease	Regimen	Hematologic protection	Other organ protection	Reference
Controlled trial	Diverse neoplasm	Cyclophosphamide 1,500 mg/m ² Amifostine 740 mg/m ²	↓ granulocytopenia (p<0.0005) ↓ thrombocytopenia - NS	-	43 (1986)
Controlled trial	NHL	Cyclophosphamide 1,500 mg/m ² Amifostine 910 mg/m ²	↓ granulocytopenia, ↓ infection event	-	23 (1997)
Multicenter randomized controlled trial	Advanced ovarian cancer	Cyclophosphamide 1,000 mg/m ² Cisplatin 100 mg/m ² amifostine 910 mg/m ²	WBC protection (p<0.005) Platelet protection (p=0.169) RBC protection (p=0.23) Required antibiotic treatment (p<0.005)	Kidney (p=0.003) Peripheral nerve (p=0.02) Cranial nerve VIII (p=0.108) No tumor protection	21 (1996)
Phase II, Uncontrolled trial	Metastatic non-small-cell lung cancer	Cisplatin 120 mg/m ² Vinblastine 5 mg/m ² amifostine 740 or 910 mg/m ²	Days in hospital (p=0.019)	Renal protection (compared with historical control)	47 (1996)
Randomized controlled trial	Advanced solid tumor	Carboplatin 500 mg/m ² amifostine 910 mg/m ²	Platelet protection (p=0.023)	No tumor protection	48 (1997)
Phase II, Randomized controlled trial	Non-small-cell lung cancer	Carboplatin 600 mg/m ² amifostine 910 mg/m ² x 3 doses per day	↓ median time to platelet recovery (p=0.04) ↓ antibiotic treatment (p=0.06) NS in RBC, WBC protection	-	49 (1995)
Controlled trial	Locally advanced head and neck tumor	amifostine 910 mg/m ² prior to each radiation Radiotherapy 5 x 2 Gy for 6 weeks	-	↓ Xerostomia (p=0.0001) ↓ Dermatitis (p=0.0014) ↓ Dysphagia (p<0.0001)	50 (1998)
Randomized controlled trial	Stage III/IV carcinoma of head and neck	Radiotherapy 2 Gy/day x 5 days/week for 6 weeks Carboplatin 70 mg/m ² amifostine 500 mg/m ² prior to Carboplatin (single dose)	↓ Thrombocytopenia (p=0.012) ↓ Leucopenia (p=0.001) ↓ Anemia (p=0.014) ↓ antibiotic treatment (p=0.017) ↓ G-CSF treatment (p=0.019) ↓ GM-CSF treatment (p=0.001)	↓ Mucositis (p<0.0001) ↓ Xerostomia (p=0.0001) ↓ Dermatitis (p=0.002) ↓ Loss of taste (p=0.001) ↓ Dysphagia (p=0.0001)	51 (1995)
Multicenter randomized controlled trial Pilot study	Advanced colorectal cancer Stage IV malignant melanoma	Mitomycin-C 20 mg/m ² amifostine 910 mg/m ² Fotemustine 100 mg/m ² Amifostine 740 mg/m ²	↓ Thrombocytopenia (p=0.026) NS in RBC, WBC protection No severe myelosuppression (historical control group 40% major thrombocytopenia 4.5% severe leucopenia)	Pulmonary toxicity (No difference)	52 (1994)
Phase I Trial	Refractory cancer in children	Melphalan 35-45 mg/m ² Amifostine 1,000 mg/m ²	No hematologic protection	-	53 (1998)
				No non significant	54 (1995)

in an 88 per cent reduction ($p=0.169$) in the number of platelet units transfused and a 29 per cent reduction in the RBC units transfused ($p=0.230$). In addition to the hematologic protection, this trial showed protective effects of amifostine from cisplatin induced nephrotoxicity, neurotoxicity and ototoxicity ($p=0.003, 0.029, 0.108$, respectively). Moreover, the pretreatment of amifostine before CP regimen did not show tumor cell protection.

There have been many clinical trials investigating the efficacy of the cytoprotective ability of amifostine to various cytotoxic agents in patients with various neoplasms; these are summarized in Table 1(21,23,43,47-54). Table 1 shows that amifostine has broad spectrum cytoprotective properties as follows : 1, hematologic protection from cyclophosphamide, carboplatin, mitomycin C, fomustine and radiotherapy; 2, renal and peripheral nerve protection from cisplatin; 3, mucosa, skin, and salivary gland from radiotherapy; 4, no tumor protection. However, amifostine cannot protect against hematologic toxicity induced by melphalan(54).

Chemotherapy - or radiotherapy-induced secondary malignancy is an important late complication of cancer therapy. Preclinical studies demonstrated that amifostine is anticarcinogenic, antimutagenic, anticlastogenic and antitransforming(29, 55-59). In addition to the cytoprotective ability, amifostine has been shown to enhance the tumor effect of carboplatin, nitrogen mustard, melphalan, and cisplatin combined with 5-FU or vinblastine in preclinical studies(10,29,33,60-63).

Recently, List et al provided data that amifostine could stimulate hematopoiesis from both preclinical and clinical studies(8,64,65). They evaluated the hematological stimulation of amifostine (phase I/II trial) in 18 patients with myelodysplastic syndrome (MDS)(64). The data showed that there were single- and multi-lineage hematologic responses in 15 patients (83%). Fourteen patients (78%) had a rise in absolute neutrophil count (ANC) exceeding 50 of baseline (range ANC increased 426 to 11,348/mm³), and platelet count increased in 6 of 14 patients (43%) (range 16,000-110,000/mm³). Five of 15 red cell transfusion-dependent patients (33%) had a ≥ 50 per cent reduction in transfusions. Three patients (2 RAEB-t, 1 RAEB) had an increase in BM blast percentage and two of them progressed to acute myeloid leukemia.

Side effect

The two major side effects of amifostine that causes treatment discontinuation are vomiting and hypotension(3,5,6,21,46). The minor side effects include flushing, sneezing, sleepiness, dizziness, hiccups, chills, metallic taste, allergic reaction, and hypocalcemia(3,4,5,21,39,46,66,67).

Transient hypotension occurs in about 60 per cent of patients but serious hypotension (decrease in systolic blood pressure > 20 mmHg for over 5 per cent minutes or symptomatic hypotension) is rare, occurring in about 5 of patients(5,21, 36,66). Hypotension usually occurs at the end of the infusion and lasts less than 10 minutes(5,21).

Vomiting is dose related and often occurs within 30 minutes of amifostine administration(5, 36). However, this incidence is reduced by pretreatment with dexamethasone and serotonin antagonists(5,21,66).

Transient hypocalcemia is common but symptomatic hypocalcemia is rare(66). The symptomatic hypocalcemia is usually reported in patients given multiple doses of amifostine(66).

Guidelines for amifostine therapy

Results of preclinical and clinical studies led to the USFDA approval in 1995 for use of amifostine as a cytoprotectant in patients treated with cyclophosphamide and cisplatin for advanced ovarian cancer(6). The recommended dose for adults is 910 mg/m² administered as a 15-minute intravenous infusion 30 minutes before the initiation of chemotherapy(6,21,66,68). The drug has to be given daily for fractionated chemotherapy or radiotherapy(5). Repeated doses may be required when combined with long half-life chemotherapy such as carboplatin(1,6). Dose should be reduced to 740 mg/m², if patients experience significant hypotension. The dose used for radioprotection ranges from 200 to 910 mg/m²(5,7,50,51).

Other guidelines are recommended to reduce or treat hypotension events as follows(1,5, 6,21,66,68) : 1, all hypertensive drugs should be withheld for 24 hours prior to amifostine infusion; 2, the patients should be hydrated before the amifostine infusion; 3, the patients should be in supine position during treatment period; 4, monitor patient blood pressure every 5 minutes during amifostine infusion; 5, if there is significant drop in blood pressure or hypotensive symptoms, the drug has to be stopped and the patients should receive normal saline and be placed in the Trendelenburg position.

REFERENCES

1. Schuchter LM. Current role of protective agents in cancer treatment. *Oncology* 1997;11: 505-16.
2. Trott A. Toxicity antagonists in cancer therapy. *Curr Opin Oncol* 1997;9:569-78.
3. Griggs JJ. Reducing the toxicity of anticancer therapy: new strategies. *Leuk Res* 1998;22:S27-33.
4. Capizzi RL. Amifostine: the preclinical basis for broad-spectrum selective cytoprotection of normal tissues from cytotoxic therapies. *Semin Oncol* 1996;23:Suppl 8:2-17.
5. McCauley DL. Amifostine: a novel cytoprotective agent. *Cancer Pract* 1997;5:189-91.
6. Foster-Nora JA, Siden R. Amifostine for protection from antineoplastic drug toxicity. *Am J Health Syst Pharm* 1997;54:787-800.
7. Tannehill SP, Mehta MP. Amifostine and radiation therapy: past, present, and future. *Semin Oncol* 1996;23:Suppl 8:69-77.
8. List AF, Heaton R, Glinsmann-Gibson B, Capizzi RL. Amifostine protects primitive hematopoietic progenitors against chemotherapy cytotoxicity. *Semin Oncol* 1996;23:Suppl 8:58-63.
9. Dorr RT. Cytoprotective agents for anthracyclines. *Semin Oncol* 1996;23:Suppl 8:23-4.
10. Van der Vijgh WJF, Korst AEC. Amifostine (Ethylol®): pharmacokinetic and pharmacodynamic effects in vivo. *Eur J Cancer* 1996;32A:S26-30.
11. Shaw LM, Glover D, Turrisi A, *et al.* Pharmacokinetics of WR-2721. *Pharmacol Ther* 1988;39: 195-201.
12. Calabro-Jones PM, Fahey RC, Smoluk GD, Ward JF. Alkaline phosphatase promotes radioprotection and accumulation of WR-1065 in V79-171 cells incubated in medium containing WR-2721. *Int J Radiat Biol* 1985;47:23-7.
13. Fleckenstein L, Swynnerton NF, Ludden TM, Mangold DJ. Bioavailability and newer methods of delivery of phosphorothioate radioprotectors. *Pharmacol Ther* 1988;39:203-12.
14. Shaw LM, Turrisi AT, Glover DJ, *et al.* Human pharmacokinetics of WR-2721. *Int J Radiat Oncol Biol Phys* 1986;12:1501-4.
15. Korst AEC, Gall HE, Vermorken JB, van der Vijgh WJF. Pharmacokinetics of amifostine and its metabolites in the plasma and ascites of a cancer patient. *Cancer Chemother Pharmacol* 1996;39: 162-6.
16. Utley JF, Seaver N, Newton GL, Fahey RC. Pharmacokinetics of WR-1065 in mouse tissue following treatment with WR-2721. *Int J Radiat Oncol Biol Phys* 1984;10:1525-8.
17. Shaw LM, Bonner H, Lieberman R. Pharmacokinetic profile of amifostine. *Semin Oncol* 1996; 23:Suppl 8:18-22.
18. Treskes M, Nijtmans LG, Fichtinger-Schepman AM, van der Vijgh WJ. Effects of the modulating agent WR2721 and its main metabolites on the formation and stability of cisplatin-DNA adducts in vitro in comparison to the effects of thiosulfate and diethyldithiocarbamate. *Biochem Pharmacol* 1992;43:1013-9.
19. Treskes M, Holwerda U, Nijtmans LG, Pinedo HM, van der Vijgh WJ. The reversal of cisplatin-protein interactions by the modulating agent WR2721 and its metabolites WR1065 and WR 33278. *Cancer Chemother Pharmacol* 1992;29: 467-70.
20. Alberts DS, Speicher LA, Krutzsch M, *et al.* WR-1065, the active metabolite of amifostine (Ethylol®), does not inhibit the cytotoxic effects of a broad range of standard anticancer drugs against human ovarian and breast cancer cells. *Eur J Cancer* 1996;32A:Suppl 4:S17-20.
21. Kemp G, Rose P, Lurain J, *et al.* Amifostine pre-treatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. *J Clin Oncol* 1996; 14:2101-12.
22. Dunn TA, Schmoll H-J, Grunwald V, Bokemeyer C, Casper J. Amifostine does not alter the anti-tumor activity of cisplatin in a pre-clinical model of testicular cancer. *Anticancer Drugs* 1996;7: 795-9.
23. Aviles A, Diaz-Maqueo JC, Talavera A, Garcia EL, Guzman R, Nambo MJ. Bone marrow protection with amifostine in the treatment of high-risk malignant lymphoma. *Eur J Cancer* 1997;33: 1323-5.
24. Paine GD, Taylor CW, Lopez MHA, Johnson CS, Capizzi RL. Effects of amifostine and paclitaxel on growth of human ovarian carcinoma xenografts in the severe combined immune-deficient mouse: preliminary results. *Semin Oncol* 1996;23:Suppl 8:35-9.
25. Yuhas JM. Active versus passive absorption kinetics as the for selective protection of normal tissues by S-2-(3-aminopropylamino)-ethylphosphorothioic acid. *Cancer Res* 1980;40:1519-24.
26. Budd GT. Amifostine and chemotherapy-related thrombocytopenia. *Semin Oncol* 1996;23:Suppl 8:49-52.
27. Yau JC, Neidhart JA, Triozi P, *et al.* Randomized placebo-controlled trial of granulocyte-macrophage colony-stimulating-factor support for dose-intensive cyclophosphamide, etoposide, and cisplatin. *Am J Hematol* 1996;51:289-95.
28. Gerhartz HH, Engelhard M, Meusers P, *et al.*

Randomized, double-blind, placebo-controlled, phase III study of recombinant human granulocyte-macrophage colony-stimulating factor as adjunct to induction treatment of high-grade malignant non-Hodgkin's lymphomas. *Blood* 1993;82:2329-39.

29. Peters GJ, van der Vijgh WJE. Protection of normal tissues from the cytotoxic effects of chemotherapy and radiation by amifostine (WR-2721): preclinical aspects. *Eur J Cancer* 1995;31A:Suppl 1:S1-7.

30. Wasserman TH, Phillips TL, Ross G, Kane LJ. Differential protection against cytotoxic chemotherapeutic effects on bone marrow CFUs by WR-2721. *Cancer Clin Trials* 1981;4:3-6.

31. Treskes M, Boven E, van de Loosdrecht AA, et al. Effects of the modulating agent WR2721 on myelotoxicity and antitumour activity in carboplatin-treated mice. *Eur J Cancer* 1994;30A: 183-7.

32. Green D, Bensely D, Schein P. Preclinical evaluation of WR-151327: an orally active chemotherapy protector. *Cancer Res* 1994;54:738-41.

33. Van Laar JA, van der Wilt CL, Treskes M, van der Vijgh WJ, Peters GJ. Effect of WR-2721 on the toxicity and antitumor activity of the combination of carboplatin and 5-fluorouracil. *Cancer Chemother Pharmacol* 1992;31:97-102.

34. Millar JL, McElwain TJ, Clutterbuck RD, Wist EA. The modification of melphalan toxicity in tumor bearing mice by s-2-(3-aminopropylamino)-ethylphosphorothioic acid (WR2721). *Am J Clin Oncol* 1982;5:321-8.

35. Biscay P, Lespinasse F, Oiry J, et al. Radiobiological evaluation of a newly synthesized cysteamine derivative. *Int J Radiat Oncol Biol Phys* 1986;12:1469-73.

36. Kligerman MM, Glover DJ, Turrisi AT, et al. Toxicity of WR-2721 administered in single and multiple doses. *Int J Radiat Oncol Biol Phys* 1984; 10:1773-6.

37. Kligerman MM, Turrisi AT, Urtasun RC, et al. Final report on phase I trial of WR-2721 before protracted fractionated radiation therapy. *Int J Radiat Oncol Biol Phys* 1988;14:1119-22.

38. Glick JH, Glover D, Weiler C, Norfleet L, Yuhas J, Kligerman MM. Phase I controlled trials of WR-2721 and cyclophosphamide. *Int J Radiat Oncol Biol Phys* 1984;10:1777-80.

39. Constine LS, Zagars G, Rubin P, Kligerman MM. Protection by WR-2721 of human bone marrow function following irradiation. *Int J Radiat Oncol Biol Phys* 1986;12:1505-8.

40. Coia L, Krigel R, Hanks G, et al. A phase I study of WR-2721 in combination with total body irradiation (TBI) in patients with refractory lymphoid malignancies. *Int J Radiat Oncol Biol Phys* 1992;22:791-4.

41. Wadler S, Goldberg G, Fields A, et al. The potential role of amifostine in conjunction with cisplatin in the treatment of locally advanced carcinoma of the cervix. *Semin Oncol* 1996;23:Suppl 8:64-8.

42. Glover D, Glick JH, Weiler C, Fox K, Turrisi A, Kligerman MM. Phase I/II trials of WR-2721 and cis-platinum. *Int J Radiat Oncol Biol Phys* 1986; 12:1509-12.

43. Glover D, Glick JH, Weiler C, Hurowitz S, Kligerman MM. WR-2721 protects against the hematologic toxicity of cyclophosphamide: a controlled phase II trial. *J Clin Oncol* 1986;4:584-8.

44. Glover D, Glick JH, Weiler C, Fox K, Guerry D. WR-2721 and high-dose cisplatin: an active combination in the treatment of metastatic melanoma. *J Clin Oncol* 1987;5:574-8.

45. Mollman JE, Glover DJ, Hogan WM, Furman RE. Cisplatin neuropathy: risk factors, prognosis, and protection by WR-2721. *Cancer* 1988;61:2192-5.

46. Capizzi RL, Oster W. Protection of normal tissue from the cytotoxic effects of chemotherapy and radiation by amifostine: clinical experiences. *Eur J Cancer* 1995;31A:Suppl 1:S8-13.

47. Schiller JH, Storer B, Berlin J, et al. Amifostine, cisplatin, and vinblastine in metastatic non-small-cell lung cancer: a report of high response rates and prolonged survival. *J Clin Oncol* 1996;14: 1913-21.

48. Budd GT, Ganapathi R, Adelstein DJ, et al. Randomized trial of carboplatin plus amifostine versus carboplatin alone in patients with advanced solid tumors. *Cancer* 1997;80:1134-40.

49. Betticher DC, Anderson H, Ranson M, Meely K, Oster W, Thatcher N. Carboplatin combined with amifostine, a bone marrow protectant, in the treatment of non-small-cell lung cancer: a randomised phase II study. *Br J Cancer* 1995;72:1551-5.

50. Wagner W, Prott F-J, Schonekas KG. Amifostine: a radioprotector in locally advanced head and neck tumors. *Oncol Rep* 1998;5:1255-7.

51. Buntzel J, Schuth J, Kuttner K, Glatzel M. Radio-chemotherapy with amifostine cytoprotection for head and neck cancer. *Support Care Cancer* 1998; 6:155-60.

52. Poplin EA, LoRusso P, Lokich JJ, et al. Randomized clinical trial of mitomycin-C with or without pretreatment with WR-2721 in patients with advanced colorectal cancer. *Cancer Chemother Pharmacol* 1994;33:415-9.

53. Mohr P, Makki A, Breitbart E, Schadendorf D. Combined treatment of stage IV melanoma patients with amifostine and fotemustine - a pilot study. *Melanoma Res* 1998;8:166-9.

54. Adamson PC, Balis FM, Belasco JE, et al. A phase I trial of amifostine (WR-2721) and melphalan in

children with refractory cancer. *Cancer Res* 1995; 55:4069-72.

55. Nagy B, Grdina DJ. Protective effects of 2-[(amino-propyl)amino] ethanethiol against bleomycin and nitrogen mustard-induced mutagenicity in V79 cells. *Int J Radiat Oncol Biol Phys* 1986;12: 1475-8.

56. Milas L, Murray D, Brock WA, Meyn RE. Radio-protectors in tumor radiotherapy: factors and settings determining therapeutic ratio. *Pharmacol Ther* 1988;39:179-87.

57. Grdina DJ, Shigematsu N, Dale P, Newton GL, Aguilera JA, Fahey RC. Thiol and disulfide metabolites of the radiation protector and potential chemopreventive agent WR-2721 are linked to both its anti-cytotoxic and anti-mutagenic mechanisms of action. *Carcinogenesis* 1995;16: 767-74.

58. Kataoka Y, Perrin J, Hunter N, Milas L, Grdina DJ. Antimutagenic effects of amifostine: clinical implications. *Semin Oncol* 1996;23:Suppl 8:53-7.

59. Liu S-C, Murley JS, Woloschak G, Grdina DJ. Repression of c-myc gene expression by the thiol and disulfide forms of the cytoprotector amifostine. *Carcinogenesis* 1997;18:2457-9.

60. Valeriote F, Tolen S. Protection and potentiation of nitrogen mustard cytotoxicity by WR-2721. *Cancer Res* 1982;42:4330-1.

61. Peters GJ, van der Wilt CL, Gyergyay F, et al. *Int J Radiat Oncol Biol Phys* 1992;22:785-9.

62. Schuchter LM. Exploration of platinum-based dose-intensive chemotherapy strategies with amifostine (Ethylol®). *Eur J Cancer* 1996;32A: Suppl 4:S40-2.

63. Budd GT, Ganapathi R, Bukowski RM, Murthy S. Clinical effects of amifostine (Ethylol®) in patients treated with carboplatin. *Eur J Cancer* 1996; 32A: Suppl 4:S43-5.

64. List AF, Brasfield F, Heaton R, et al. Stimulation of hematopoiesis by amifostine in patients with myelodysplastic syndrome. *Blood* 1997;90:3364-9.

65. List AF. Hematopoietic stimulation by amifostine and sodium phenylbutyrate: what is the potential in MDS? *Leuk Res* 1998;22:S7-11.

66. Schuchter LM. Guidelines for the administration of amifostine. *Semin Oncol* 1996;23:Suppl 8:40-3.

67. Buresh CM, Baker KS. Fever and rash after amifostine therapy. *J Pediatr Hematol Oncol* 1998; 20: 361-3.

68. Bukowski RM. Amifostine (Ethylol®): dosing, administration and patient management guidelines. *Eur J Cancer* 1996;32A:Suppl 4:S46-9.

อัมฟอสทีนกับผลต่อระบบทางโลหิตวิทยา

จันทร์ภา ศรีสวัสดิ์ พ.บ.*, แสงสุรีย์ จูชา, พ.บ.**, พรังชีล เจ, จายส์ พ.บ.***

อัมฟอสทีนจัดเป็นยาออกฤทธิ์ป้องกันผลข้างเคียงจากการรักษาด้วยยาเคมีบำบัด หรือรังสีรักษาด้วยหนึ่งหลังจากเข้าสู่ร่างกาย ยานี้จะถูกเปลี่ยนเป็นตัวยาที่ออกฤทธิ์คือ ตับเบิลยู-อาร์-1065 โดย แอลคอลайн ฟอสฟาเทลส เอ็นไซยาน้ำที่ถูกขับจากร่างกายอย่างรวดเร็ว พบร่วมมากกว่า 90% ของยาที่ถูกขับออกจากร่างกายภายใน 6 นาที และระดับความเข้มข้นของยาสูงสุดในเนื้อเยื่อคือ 10 ถึง 30 นาที หลังฉีดเข้าทางหลอดเลือดดำ อัมฟอสทีน มีคุณสมบัติเฉพาะในการป้องกันเนื้อเยื่อปกติจากผลข้างเคียงของยาเคมีบำบัด หรือรังสีรักษาโดยไม่มีผลต่อการรักษามะเร็ง จากการศึกษามากมายพบว่ามันสามารถป้องกันเซลล์ทางระบบเลือดจากยาเคมีบำบัดหลายชนิด ยังกว่านั้นยานี้ยังสามารถป้องกันอวัยวะอื่นๆ ได้อีก เช่น ไต หัวใจ ปอด ตับ ต่อมน้ำลาย และลำไส้เล็ก อัมฟอสทีน จัดเป็นยาที่ค่อนข้างปลอดภัย จากการศึกษาพบผลข้างเคียงที่สำคัญคือ อาการคลื่นไส้ อาเจียน และความดันโลหิตต่ำ ปัจจุบันนี้ยานี้ได้รับการรับรองให้ใช้ในสหราชอาณาจักรในการป้องกันผลข้างเคียงจากการรักษาด้วยยาไซโคลอฟอสฟามิล์และซีเพลติดิน ในผู้ป่วยที่เป็นมะเร็งรังไข่และมะเร็งปอด

คำสำคัญ : อัมฟอสทีน, สารป้องกันเนื้อเยื่อจากยาเคมีบำบัด

จันทร์ภา ศรีสวัสดิ์ และคณะ

จุฬาลงกรณ์มหาวิทยาลัย ว. 2543; 83: 374-382

* ภาควิชาอายุรศาสตร์, โรงพยาบาลพระมงกุฎเกล้า, กรุงเทพมหานคร 10400

** ภาควิชาอายุรศาสตร์, คณะแพทยศาสตร์ โรงพยาบาลรามาธิบดี, กรุงเทพมหานคร 10400

*** ภาควิชาลิวีเมีย, สถาบันโรคมะเร็ง เอ็มดี แอนด์ อาร์สัน, ชุสตัน, เท็กซัส, สหรัฐอเมริกา