

Correlation of Apolipoprotein E Gene Polymorphism to Serum Lipid Concentrations in Healthy Thais†

SUWANEE CHANPRASERTYOTHIN, M.Sc.*[†], BOONSONG ONGPHIPHADHANAKUL, M.D.**[†],
RAJATA RAJATANAVIN, M.D.**[†], NOPPAWAN PIASEU, M.Sc.**[†],
LA-OR CHAILURKIT, M.Sc.**[†], GOBCHAI PUAVILAI, M.D.**[†]

Abstract

This study determined the genotype distribution of apolipoprotein E (apo E) gene and its relation to serum lipids in 217 healthy Thais consisting of 79 males and 138 females. Serum total cholesterol (TC), HDL-cholesterol (HDL-C) and triglyceride (TG) concentrations were determined by enzymatic-colorimetric methods, while serum LDL-cholesterol (LDL-C) levels were calculated using Friedewald formula. Apo E genotypes were determined by PCR-RFLP. Out of 217 subjects, apo E genotype frequencies were 5.5 per cent for E2/E2, 12.4 per cent for E2/E3, 81.1 per cent for E3/E3 and 0.9 per cent for E4/E4. In men, advancing age was associated with increased serum TC ($r = 0.28$, $P < 0.05$) and LDL-C ($r = 0.27$, $P < 0.01$). Subjects having the E2 allele had lower TC ($r = -0.27$, $P < 0.05$) and LDL-C ($r = -0.25$, $P < 0.05$). Age and apo E genotypes were not associated with HDL-C and TG in men. In women, increasing age was related to higher serum TC ($r = 0.45$, $P < 0.001$), LDL-C ($r = 0.44$, $P < 0.001$), TG ($r = 0.40$, $P < 0.001$) and lower HDL-C ($r = -0.36$, $P < 0.001$). The presence of E2 allele was related to lower TC ($r = -0.24$, $P < 0.001$), LDL-C ($r = -0.26$, $P < 0.001$), TG ($r = -0.15$, $P < 0.05$) and higher HDL-C ($r = 0.20$, $P < 0.01$) independent of age and menopausal status. We concluded that the ε4 allele of apo E gene is rare in Thais. The presence of the ε2 allele is associated with a more favorable lipid profile and there is a sexual dimorphism concerning the effect of apo E genotype on serum HDL-C and TG.

Key word : Apolipoprotein E, Genetic Polymorphism, Serum Lipids, Atherosclerosis

**CHANPRASERTYOTHIN S, ONGPHIPHADHANAKUL B, RAJATANAVIN R,
PIASEU N, CHAILURKIT L, PUAVILAI G**
J Med Assoc Thai 2000; 83: 1233-1239

* Research Center,

** Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.

† Supported by the 1997 Mahidol University Research Grant

Apolipoprotein E (apo E) is a major protein component of lipoprotein and plays an important role in the hepatic lipoprotein uptake and reverse cholesterol transport. Circulating apo E is heterogeneous in terms of protein structure and common apo E isoforms include E2, E3 and E4 which are coded by the $\epsilon 2$, $\epsilon 3$ and $\epsilon 4$ alleles at apo E gene locus, respectively. Apo E polymorphism has been associated with serum lipid concentrations in a number of populations^(1,2). Besides association with serum lipid levels, apo E polymorphism has been demonstrated to be related to cardiovascular diseases⁽³⁾. It is well known that gender and age also affect serum lipid concentrations. With advancing age, serum lipid profile becomes more atherogenic⁽⁴⁾. Moreover, the more favorable lipid profiles, when compared to men, in younger women tend to disappear after menopause⁽⁵⁾. It is unclear how the genetic effect of apo E polymorphism may interact with gender and age-related factors to determine serum lipid profiles since most studies to date did not examine such interactions concurrently.

In the present study, we determined the genotype distribution of apo E and its relation to serum lipids in healthy Thais. The gender and age-related effects were also addressed concurrently to assess the importance of apo E and its interactions with age and gender in the determination of serum lipids in Thais.

MATERIAL AND METHOD

Subjects

Seventy nine nondiabetic men and 138 non-diabetic women residing in the Bangkok Metropolitan area were recruited by leaflets or direct contact. All were found to be healthy by medical history-taking and complete physical examination.

All subjects gave informed consent and the study was approved by the Ethical Clearance Committee on Human Rights Related to Researches Involving Human Subjects of the Faculty of Medicine, Ramathibodi Hospital, Mahidol University.

Laboratory Assessments

Fasting blood samples were obtained from subjects between 8.00 and 10.00 am. Serum samples were frozen at -20°C until measurement. Serum total cholesterol (TC), HDL-cholesterol (HDL-C) and triglyceride (TG) concentrations were determined by enzymatic-colorimetric method⁽⁶⁻⁸⁾, while serum LDL-cholesterol (LDL-C) levels were calculated using Friedewald formula⁽⁹⁾.

Determination of Apo E genotypes

Apo E genotypes were determined by a previously reported method⁽¹⁰⁾ with some modifications. Genomic DNA (0.1 μ g) was amplified in 50 μ l of 20 mM Tris-HCl, pH 8.0 and 160 μ M of each of the four deoxyribonucleotides. One unit of Taq polymerase and 0.2 μ M of each of the oligonucleotide primers were used for the reaction. Polymerase chain reaction was performed through 40 cycles by the following steps: denaturation at 94°C for 30 seconds, annealing at 65°C for 30 seconds and extension at 30°C for 1 minute. After amplification, the PCR product was digested with HhaI restriction endonuclease and resolved in 5 per cent Metaphor agarose gel (FMC Bio Product, USA) with ethidium bromide staining.

Statistical Analyses

Association between serum lipids and apo E alleles was analyzed using Pearson's correlation. The presence of $\epsilon 2$ allele was numerically coded as 1 while the absence of the allele was coded as 2. Assessments of difference between 2 categories were performed by Mann-Whitney U test. Step-wise multiple linear regression was used to determine the concurrent effects of multiple variables on serum lipids. Data were presented as mean \pm SEM.

RESULTS

Clinical characteristics and serum lipid concentration in male and female subjects are shown in Table 1. As demonstrated in Table 2, advancing age was associated with increased serum TC and LDL-C in men while HDL-C and TG were not related to increasing age. In women, increasing age was also related to higher serum TC and LDL-C. However, unlike the findings in men, increasing age in women was associated with higher TG and lower HDL-C. When categorizing the subjects into age groups, it was found that women had significantly higher HDL-C than men in all age groups while the lower TG compared to men in younger women no longer persisted when age was greater than 60 years (Table 3). No gender-related difference in TC or LDL-C was demonstrated in any age groups.

The distribution of apo E genotypes is shown in Table 4. The $\epsilon 4$ allele was rare in our population. There was no difference in genotypes distribution between men and women. Men with $\epsilon 2$

Table 1. Clinical characteristics and serum lipid concentrations in male and female subjects.

	Males (n = 79)	Females (n = 138)
Age (year)	51.8 ± 1.8	50.8 ± 1.2
Body weight (kg)	66.0 ± 1.3	54.9 ± 0.7
Total cholesterol (mg/dl)	220.4 ± 4.4	224.3 ± 3.5
LDL-cholesterol (mg/dl)	160.8 ± 4.3	162.5 ± 3.4
HDL-cholesterol (mg/dl)	31.8 ± 1.1	40.9 ± 0.8
Triglyceride (mg/dl)	138.9 ± 8.4	104.1 ± 4.4

Data are presented as mean ± SEM

Table 2. Correlations between serum lipid concentrations and age in males and females.

	Males		Females	
	r	p	r	p
Total cholesterol (mg/dl)	0.28	< 0.05	0.45	< 0.001
LDL-cholesterol (mg/dl)	0.29	< 0.05	0.45	< 0.001
HDL-cholesterol (mg/dl)	-0.07	NS	-0.36	< 0.001
Triglyceride (mg/dl)	-0.02	NS	0.41	< 0.001

Table 3. Comparison of serum lipid concentrations between males and females in different age groups.

	Males	Females	p
Age < 40 years	n = 19	n = 29	
Total cholesterol (mg/dl)	192.8 ± 9.2	200.6 ± 6.6	NS
LDL-cholesterol (mg/dl)	135.1 ± 8.7	137.7 ± 6.2	NS
HDL-cholesterol (mg/dl)	33.4 ± 3.1	47.1 ± 1.3	< 0.001
Triglyceride (mg/dl)	121.9 ± 19.4	78.5 ± 6.4	< 0.05
Age 40.0 – 59.9 years	n = 31	n = 71	
Total cholesterol (mg/dl)	232.4 ± 6.2	220.9 ± 4.4	NS
LDL-cholesterol (mg/dl)	171.7 ± 6.7	160.9 ± 4.3	NS
HDL-cholesterol (mg/dl)	29.4 ± 1.3	40.5 ± 1.1	< 0.001
Triglyceride (mg/dl)	156.4 ± 14.6	97.5 ± 5.5	< 0.001
Age ≥ 60 years	n = 31	n = 42	
Total cholesterol (mg/dl)	229.1 ± 6.4	245.1 ± 6.5	NS
LDL-cholesterol (mg/dl)	170.0 ± 6.3	181.4 ± 8.1	NS
HDL-cholesterol (mg/dl)	33.5 ± 1.3	37.7 ± 1.4	< 0.05
Triglyceride (mg/dl)	128.2 ± 9.3	130.2 ± 9.0	NS

Data are presented as mean ± SEM

Table 4. Distribution of apo E genotypes in males and females.

	Apo E Genotype					
	ε2ε2	ε2ε3	ε2ε4	ε3ε3	ε3ε4	ε4ε4
Males (n = 79)	4 (5.1%)	13 (16.5%)	0	62 (78.5%)	0	0
Females (n = 138)	8 (5.8%)	14 (10.1%)	0	114 (82.6%)	0	2 (1.4%)
Total (n = 217)	12 (5.5%)	27 (12.4%)	0	176 (81.1%)	0	2 (0.9%)

Table 5. Comparison of serum lipid concentrations in males with and without ε2 allele.

	ε2 present (n = 17)	ε2 absent (n = 64)	p
Total cholesterol (mg/dl)	200.6 ± 10.7	225.9 ± 4.5	< 0.05
LDL-cholesterol (mg/dl)	142.8 ± 10.0	165.9 ± 4.7	< 0.05
HDL- cholesterol (mg/dl)	31.9 ± 1.9	31.7 ± 1.2	NS
Triglyceride (mg/dl)	129.8 ± 12.5	141.5 ± 10.1	NS

Data are presented as mean ± SEM

Table 6. Comparison of serum lipid concentrations in premenopausal and postmenopausal females with and without ε2 allele.

	ε2 present	ε2 absent	p
Premenopausal females	n = 11	n = 46	
Total cholesterol (mg/dl)	180.9 ± 10.4	208.3 ± 4.2	< 0.05
LDL-cholesterol (mg/dl)	121.6 ± 10.1	147.2 ± 4.3	< 0.05
HDL-cholesterol (mg/dl)	45.5 ± 2.3	44.3 ± 1.4	NS
Triglyceride (mg/dl)	69.0 ± 9.6	84.0 ± 4.8	< 0.05
Postmenopausal females	n = 11	n = 70	
Total cholesterol (mg/dl)	219.0 ± 11.7	242.5 ± 4.9	< 0.05
LDL-cholesterol (mg/dl)	153.6 ± 11.7	180.5 ± 4.5	< 0.05
HDL-cholesterol (mg/dl)	45.5 ± 2.3	37.3 ± 1.0	< 0.01
Triglyceride (mg/dl)	99.3 ± 10.1	123.5 ± 7.1	NS

Data are presented as mean ± SEM

allele had lower TC and LDL-C (Table 5). However, the presence of ε2 allele did not affect HDL-C and TG in men. Similar to the findings in men, pre- and postmenopausal women with ε2 allele had lower TC and LDL-C (Table 6). Nevertheless, pre- and postmenopausal women with ε2 allele also had lower TG and higher HDL-C, respectively.

Using stepwise regression analysis to assess the simultaneous effects of advancing age and apo E genotype on serum lipids, it was found that advancing age and the absence of ε2 allele were associated with higher TC and LDL-C in men. No effect on HDL-C and TG was demonstrated (Table 7). In women, advancing age and the absence of ε2 allele were associated with higher TC, LDL-C, TG and lower HDL-C (Table 7). Menopausal status did not affect serum lipids after controlling for age.

DISCUSSION

Apo E polymorphism display ethnic variations especially for the frequency of E4 allele. In Caucasians, the proportion of the population har-

boring E4 allele is in the 10 - 20 per cent range. In contrast, the prevalence of E4 allele in Asians is low. In Chinese, the prevalence of E4 allele has been reported to be 4.9 per cent(11) while it is 11.1 per cent in Japanese(12). In the present study in Thais, low prevalence of E4 allele was also demonstrated. The reason for the different gene distribution is unclear. Nevertheless, it has been suggested that different distribution of apo E polymorphism may be accountable for the variation in the prevalence of atherosclerosis among different populations(13,14). Apo E polymorphism was associated with higher mortality from cardiovascular disease in elderly women(15) and early atherosclerosis as assessed by carotid intimal thickness(16) and the initiation and progression of atherosclerosis(17). Changes in lipid profile and the size of LDL particles(18) may mediate the effect of apo E polymorphism on coronary heart disease. Our present findings concerning the influence of apo E genotypes on serum lipids are in keeping with other previous

Table 7. Standardized coefficients of regression from stepwise multiple linear regression analyses of the relation between age, apo E polymorphism and serum lipids in males and females.

	Age		ε2 status	
	β	p	β	p
Males				
Total cholesterol (mg/dl)	0.28	< 0.05	-0.27	< 0.05
LDL-cholesterol (mg/dl)	0.27	< 0.01	-0.25	< 0.05
HDL-cholesterol (mg/dl)	-	NS	-	NS
Triglyceride (mg/dl)	-	NS	-	NS
Females				
Total cholesterol (mg/dl)	0.45	< 0.001	-0.24	< 0.001
LDL-cholesterol (mg/dl)	0.44	< 0.001	-0.26	< 0.001
HDL-cholesterol (mg/dl)	-0.36	< 0.001	0.20	< 0.05
Triglyceride (mg/dl)	0.40	< 0.001	-0.15	< 0.05

studies showing that E2 allele is more favorable in terms of lipid profiles(1,2) while E4 allele is the least favorable. The association between apo E and serum lipids is evident in children as young as 3 years old. However, the effect is not apparent in the newborn suggesting that environmental factors are needed for apo E polymorphism to exert its effect(19).

It is well established that aging is associated with changes in serum lipids, particularly an increase in LDL-C and TG and decrease in HDL-C as demonstrated in the present study. It has been reported that there is an interaction of aging and genotype on serum lipids(20,21). However, It is of note that the effect of apo E polymorphism on serum lipid concentrations is partly gender-related such that apo E polymorphism was related to variation in serum HDL-C and TG only in women. The reason for the gender-related modulation is unclear. Few studies have addressed the gender-related

difference in the effect of apo E on serum lipids. Similar to our findings, a study in American Indians demonstrated a gender difference such that the relation between apo E and TG was stronger in postmenopausal women compared to men(22). Estrogen has a number of effects on serum lipids. For example, it has been shown that estrogen decreases LDL-C, increases HDL-C and may decrease TG levels. The mechanisms by which estrogen affect serum lipids include stimulating hepatic VLDL uptake, induction of hepatic LDL receptors and LDL uptake. It is likely that there may be an interaction between estrogen and apo E systems on serum lipids. In fact, estrogen replacement has been demonstrated to decrease serum apo E levels(23, 24). Although there were studies showing different responses to lipid-lowering agents such as bezafibrate and pravastatin among subjects with different apo E polymorphism, data on such an effect of estrogen is not available.

(Received for publication on May 28, 1999)

REFERENCES

- Eggertsen G, Tegelman R, Ericsson S, et al. Apolipoprotein E polymorphism in a healthy Swedish population: variation of allele frequency with age and relation to serum lipid concentrations. *Clin Chem* 1993; 39: 2125-9.
- Braeckman L, De Bacquer D, Rosseneu M, et al. Apolipoprotein E polymorphism in middle-aged Belgian men: phenotype distribution and relation to serum lipids and lipoprotein. *Atherosclerosis* 1996; 120: 67-73.
- Lehtinen S, Lehtimaki T, Sisto T, et al. Apolipoprotein E polymorphism, serum lipids, myocardial infarction and severity of angiographically verified coronary artery disease in men and women. *Atherosclerosis* 1995; 114: 83-91.
- McNamara JR, Campos H, Ordovas JM, et al. Effect of gender, age, and lipid status on low density lipoprotein subfraction distribution. Results from the Framingham Offspring Study. *Arteriosclerosis* 1987; 7: 483-90.
- Campos H, McNamara JR, Wilson PW, et al. Differences in low density lipoprotein subfractions and apolipoproteins in premenopausal and postmenopausal women. *J Clin Endocrinol Metab* 1988; 67: 30-5.
- Monotest Cholesterol. Mannheim: Boehringer Mannheim GmbH Diagnostica, 1982.
- Peridochrom triglycerides. Mannheim: Boehringer Mannheim GmbH Diagnostica, 1982.
- Burstein M. Determination of HDL-cholesterol. *Lipid Res* 1970; 11: 583-7.
- Friedewald WT, Levy RI, Frederickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. *Clin Chem* 1972; 18: 499-502.
- Wenham PR, Price WH, Blundell G. Apolipoprotein E genotyping by one-stage PCR. *Lancet* 1991; 337: 1158-9.
- Kao JT, Tsai KS, Chang CJ, et al. The effects of apolipoprotein E polymorphism on the distribution of lipids and lipoproteins in the Chinese population. *Atherosclerosis* 1995; 114: 55-9.
- Tsukamoto K, Watanabe T, Matsushima T, et al. Determination by PCR-RFLP of apo E genotype in a Japanese population. *J Lab Clin Med* 1993; 121: 598-602.
- Muros M, Rodriguez-Ferrer C. Apolipoprotein E polymorphism influence on lipids, apolipoproteins and Lp(a) in a Spanish population under-expressing apo E4. *Atherosclerosis* 1996; 121: 13-
- James RW, Boemi M, Giansanti R, et al. Under-expression of the apolipoprotein E4 isoform in an Italian population. *Arterioscler Thromb* 1993; 13: 1456-9.
- Vogt MT, Cauley JA, Kuller LH. Apolipoprotein E phenotype, arterial disease, and mortality among older women: the study of osteoporotic fractures. *Genet Epidemiol* 1997; 14: 147-56.
- Cattin L, Fisicaro M, Tonizzo M, et al. Polymorphism of the apolipoprotein E gene and early carotid atherosclerosis defined by ultrasonography in asymptomatic adults. *Arterioscler Thromb Vasc Biol* 1997; 17: 91-4.
- Davignon J, Gregg RE, Sing CF. Apolipoprotein E polymorphism and atherosclerosis. *Arteriosclerosis* 1988; 8: 1-21.
- Haffner SM, Stern MP, Miettinen H, et al. Apolipoprotein E polymorphism and LDL size in a biethnic population. *Arterioscler Thromb Vasc Biol* 1996; 16: 1184-8.
- Lehtimaki T, Porkka K, Viikari J, et al. Apolipoprotein E phenotypes and serum lipids in newborns and 3-year-old children: the Cardiovascular Risk in Young Finns Study. *Pediatrics* 1994; 94: 489-93.
- Jarvik GP, Goode EL, Austin MA, et al. Evidence that the apolipoprotein E-genotype effects on lipid levels can change with age in males: a longitudinal analysis. *Am J Hum Genet* 1997; 61: 171-81.
- Schaefer EJ, Lamon-Fava S, Johnson S, et al. Effects of gender and menopausal status on the association of apolipoprotein E phenotype with plasma lipoprotein levels. Results from the Framingham Offspring Study. *Arterioscler Thromb* 1994; 14: 1105-13.
- Kataoka S, Robbins DC, Cowan LD, et al. Apolipoprotein E polymorphism in American Indians and its relation to plasma lipoproteins and diabetes. The Strong Heart Study. *Arterioscler Thromb Vasc Biol* 1996; 16: 918-25.
- Kushwaha RS, Foster DM, Barrett PH, et al. Metabolic regulation of plasma apolipoprotein E by estrogen and progesterone in the baboon (Papio sp). *Metabolism* 1991; 40: 93-100.
- Urabe M, Yamamoto T, Kashiwagi T, et al. Effect of estrogen replacement therapy on hepatic triglyceride lipase, lipoprotein lipase and lipids including apolipoprotein E in climacteric and elderly women. *Endocr J* 1996; 43: 737-42.

ความสัมพันธ์ระหว่างโพลิโนพิชั่นของยีนอะโภไลโปโปรตีนอีและระดับไขมันในเลือด ในคนไทย

สุวรรณี ชั้นประเสริฐโยธิน, วท.ม.*, บุญส่ง วงศ์พิพัฒนกุล, พ.บ.**, รัชดา รัชดาภาวนิ, พ.บ.**,
นพวรรณ เปิญชื่อ, วท.ม.**, ละออ ชัยลือกิจ, วท.ม.**, กอบชัย พัววิไล, พ.บ.**

จากการศึกษาความถี่ของยีนอะโภไลโป อี ในคนไทยสุขภาพสมบูรณ์ จำนวน 217 คน แบ่งเป็นชาย 79 คน และหญิง 138 คน พบว่ามีลักษณะของยีน E2/E2, E2/E3, E3/E3 และ E4/E4 เท่ากับ 5.5%, 12.4%, 81.8% และ 0.9% ตามลำดับ ในรายพบว่าอยู่ในความสัมพันธ์เชิงบวกกับระดับコレสเตรออล และระดับแอลดีไฮด์コレสเตรออล แต่ถ้ามีลักษณะของยีน E2 ร่วมด้วย จะทำให้ระดับไตรกลีเซอเรตและระดับแอลดีไฮด์コレสเตรออลลดลง แต่จะไม่มีความสัมพันธ์กับระดับเอชดีแอลコレสเตรออล ในหญิงพบว่าอยู่ในความสัมพันธ์เชิงบวกกับระดับコレสเตรออล, ไตรกลีเซอเรต, และแอลดีไฮด์コレสเตรออล แต่มีความสัมพันธ์เชิงลบกับระดับเอชดีแอลコレสเตรออล ถ้ามีลักษณะของยีน E2 ร่วมด้วย ก็จะทำให้ระดับコレสเตรออล, ไตรกลีเซอเรต, และแอลดีไฮด์コレสเตรออลลดลง ส่วนระดับเอชดีแอลコレสเตรออลจะเพิ่มขึ้น ในประชากรไทยจะพบลักษณะของยีน E4 ได้น้อย และยีน E2 จะทำให้ระดับไขมันดีขึ้น อะโภไลโป อี ยีน มีผลต่อระดับเอชดีแอลコレสเตรออลและไตรกลีเซอเรตต่างกันในเพศที่ต่างกัน

คำสำคัญ : อะโภไลโปโปรตีนอี, ความหลอกหลายทางพันธุกรรม, ระดับไขมัน, หลอดเลือดแดงแข็ง

สุวรรณี ชั้นประเสริฐโยธิน, บุญส่ง วงศ์พิพัฒนกุล, รัชดา รัชดาภาวนิ
นพวรรณ เปิญชื่อ, ละออ ชัยลือกิจ, กอบชัย พัววิไล
จดหมายเหตุทางแพทย์ ย 2543; 83: 1233-1239

* ล้านักงานวิจัย,

** ภาควิชาอายุรศาสตร์, คณะแพทยศาสตร์ โรงพยาบาลรามาธิบดี, มหาวิทยาลัยมหิดล, กรุงเทพ ย 10400