

Flap Analysis: Critical Point in Laser *in Situ* Keratomileusis

SABONG SRIVANNABOON, M.D.*

Abstract

A prospective study of 151 eyes, which underwent laser *in situ* keratomileusis, was done. Corneal flap creation was performed by using Moria LSK- One microkeratome (160 micrometers thickness) (distributed by Microtech, Inc., Moria, France). Flap thickness (measured by high frequency ultrasound), flap diameter (both horizontal and vertical), hinge size and pupillary hinge distance were recorded. The actual values from the measurement were compared to the predicted values from the microkeratome. The mean flap thickness was 161 ± 38 micrometers compare to 160 micrometers predicted value. The mean diameter of the flap was 9.00 ± 0.64 mm vertical and 8.94 ± 0.54 mm horizontal compare to 9.00 mm predicted value. The hinge size was 4.75 ± 0.84 mm. The pupillary-hinge distance was 3.35 ± 0.61 mm. There was very high variable of the flap thickness, which can lead to miscalculation of the residual stroma. This miscalculation will be very critical if the residual stroma is left too thin. Caution should be made in higher level of myopia to avoid the serious complication such as keratectasia.

Key word : Laser *in Situ* Keratomileusis, Corneal Flap, Residual Stromal Calculation

SRIVANNABOON S
J Med Assoc Thai 2001; 84: 1317-1320

Laser *in situ* Keratomileusis (LASIK) comprises of two major steps, corneal flap creation by using microkeratome and corneal stromal ablation by using excimer laser. The corneal stromal ablation is mostly done by a computer-controlled laser machine. Therefore, most refractive surgeons

find that the critical part of the surgery is the flap creation. The better the flap, the better the result.

This study was performed to demonstrate how to use the parameters of the corneal flap to maximize the result of LASIK.

* Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

PATIENTS AND METHOD

A prospective study of 83 patients who attended the refractive surgery clinic at the Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University between December 1998 and June 1999 was done. A complete pre-operative evaluation was done and any patient who was eligible for LASIK procedure was included in the study. All LASIK procedures were performed by same surgeon. Moria LSK- One microkeratome (160 micrometers thickness) (distributed by Microtech, Inc., Moria, France) was used to create the corneal flap. Diameter of the flap (both vertical and horizontal, hinge size, pupillary-hinge distance, and thickness of the flap measured by ultrasonic pachymeter Model 850 (Humphrey Instrument, San Leandro, CA) were recorded. (Fig. 1).

Diagram 1

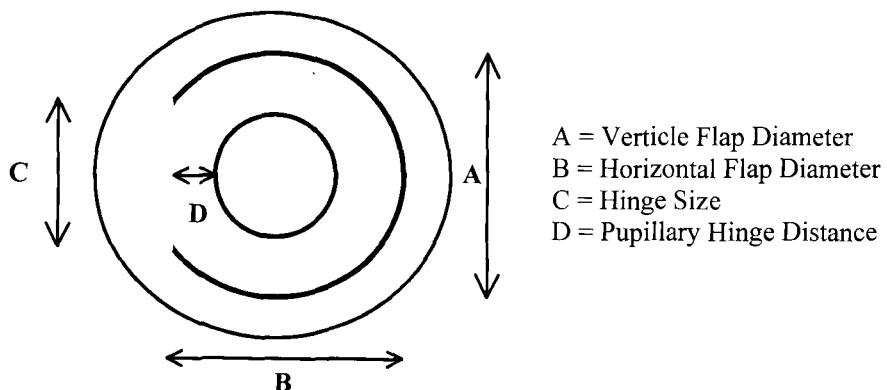


Fig. 1. Shows the measurement of each parameter including diameter of the flap (both horizontal and vertical), hinge size, pupillary-hinge distance and flap thickness.

Table 1. Shows all parameters used to analyze the flap in this study. Note that the actual flap thickness is similar to the predicted value. Also note that the standard deviation of the flap thickness is very high. All other parameters indicate a good flap creation.

	Flap thickness (expected 160 micrometers)	Hinge size (expected > 0 mm)	Flap diameter (expected 9 mm)		Pupillary-Hinge distance (expected > 0 mm)
			V	H	
Mean	161	4.75	9.00	8.94	3.35
Standard deviation	38	0.84	0.64	0.54	0.61
Minimum	107	3	8	8	2.5
Maximum	205	7	11	11	5.5

RESULTS

There were 151 eyes (76 right eyes and 75 left eyes) in 83 patients included in this study. The mean age of the study group was 35.1 ± 13.2 years (range 17 to 62 years). The mean refractive error (spherical equivalent) was -5.04 ± 3.52 diopters (range -0.50 to -20.0 diopters).

The results of the flap analysis are shown in Table 1.

DISCUSSION

The corneal flap creation is the most critical step in LASIK. Most complications occur during the microkeratome cut(1). In order to perform laser ablation, the quality of the flap must be good enough. Appropriate location, diameter and thickness of the flap are required. Several studies have shown different methods of flap analysis(2-5).

There are several parameters that indicate the success of flap creation. One of the most important parameters is corneal flap thickness. Corneal flap thickness is used to calculate the residual stroma to ensure the integrity of the cornea after the surgery. Simple mathematical calculation is used by subtracting the flap thickness and laser ablation depth from the pre-operative corneal thickness(6). Usually the level of residual stroma is recommended at 250 micrometers. If the residual stroma is less than 250 micrometers, there will be a higher risk of keratoctasia(7).

In this study, the mean flap thickness was 161 micrometers, which is very close to the predicted value of the microkeratome. The very high standard deviation of the flap thickness (± 38 micrometers) indicates the low accuracy of the flap thickness creation. The maximum cut in this study was 205 micrometers, which is 40 micrometers higher than the predicted value. Therefore, the risk of miscalculation of the residual stroma is very high. In low myopia, the miscalculation will be compensated because of the small amount of laser ablation depth required. But in high myopia, the miscalculation can lead to a serious problem. If the residual stroma calculation is set at 250 micrometers by using 160 micrometers flap thickness but the actual flap thickness is more than 160 micrometers, the actual residual stroma will be below 250 micrometers. In order to minimize the risk of miscalcula-

tion, the single magic number (160 micrometers) should not be used in every case. Refractive surgeons should know the performance of their microkeratome, how thick they cut and how reproducible the cut is. In the case of high risk, the actual measurement of flap thickness by using intra-operative ultrasonic pachymetry is recommended.

Other parameters used in this study to indicate the success of flap creation were

- Diameter of the flap: the actual value was close to the predicted value (with less than 1 mm standard deviation)
- Hinge size: this value indicates the risk of free cap if close to zero, which was not so in this study
- Pupillary-hinge distance: this value indicated the risk of short flap if close to zero, which was not so in this study.

This study showed the analysis of the flap created by Moria LSK-One microkeratome. The flap thickness was the most critical part of the study.

The refractive surgeon should know how to analyze the corneal flap during the LASIK procedure. There is also evaluation of the corneal flap after the surgery such as wrinkle of the flap and flap displacement which refractive surgeons should aware of in order to maintain a high standard of the procedure(8,9).

(Received for publication on July 3, 1999)

REFERENCES

1. Walker MB, Wilson SE. Lower intra-operative flap complication rate with the Hansatome microkeratome compared to the Automated Corneal Shaper. *J Refract Surg* 2000; 16: 79-82.
2. Jacobs BJ, Deutsch TA, Rubenstein JB. Reproducibility of corneal flap thickness in LASIK. *Ophthalmic Surg Lasers* 1999; 30: 350-3.
3. Behrens A, Langenbucher A, Kus MM, Rummelt C, Seitz B. Experimental evaluation of two current-generation automated microkeratomes: the Hansatome and the Supratome. *Am J Ophthalmol* 2000; 129: 59-67.
4. Maldonado MJ, Ruiz-Oblitas L, Munuera JM, Aliseda D, Garcia-Layana A, Moreno-Montanes J. Optical coherence tomography evaluation of the corneal cap and stromal bed features after laser in situ keratomileusis for high myopia and astigmatism. *Ophthalmology* 2000; 107: 81-7.
5. Yi WM, Joo CK. Corneal flap thickness in laser in situ keratomileusis using an SCMD manual microkeratome. *J Cataract Refract Surg* 1999; 25: 1087-92.
6. Probst LE, Machat JJ. Mathematics of laser in situ keratomileusis for high myopia. *J Cataract Refract Surg* 1998; 24: 190-5.
7. Wang Z, Chen J, Yang B. Posterior corneal surface topographic changes after laser in situ keratomileusis are related to residual corneal bed thickness. *Ophthalmology* 1999; 106: 406-9; discussion 409-10.
8. Munoz G, Alio JL, Perez-Santonja JJ, Attia WH. Successful treatment of severe wrinkled corneal flap after laser in situ keratomileusis with deionized water. *Am J Ophthalmol* 2000; 129: 91-2.
9. Leung AT, Rao SK, Cheng AC, Yu EW, Fan DS, Lam DS. Pathogenesis and management of laser in situ keratomileusis flap buttonhole. *J Cataract Refract Surg* 2000; 26: 358-62.

การวิเคราะห์ผลของการแยกชั้นกระจากตานในการผ่าตัดแก้ไขสายตาสั้นโดยวิธีเลสิก (LASIK, laser *In situ* keratomileusis)

สม ศรีวรรณบูรณ์ พ.บ.ว. (จักษุวิทยา)*

การศึกษาฉบับนี้ทำขึ้นเพื่อวิเคราะห์ผลของการแยกชั้นกระจากตานในการผ่าตัดแก้ไขสายตาสั้น โดยวิธีเลสิก โดยทำ การศึกษาในผู้ที่มารับการผ่าตัดแก้ไขสายตาสั้น จำนวน 151 ตา โดยทุกตาจะได้รับการตรวจด้วยกล้องเอียด การแยกชั้นกระจากตานทำโดยใช้เครื่องมือแยกชั้นกระจากตาน Moria LSK- One microkeratome (Microtech, Inc., Moria, France) ค่าความหนาของชั้นกระจากตาน เส้นผ่าศูนย์กลางของชั้นกระจากตานทั้งในแนวตั้งและในแนวนอน ความยาวของชั้นกระจากตาน และระยะห่าง จากชั้นกระจากตานถึงขอบของรูม่านตาได้ถูกบันทึกอย่างละเอียด ค่าที่ตัดได้จริงได้ถูกนำมาเปรียบเทียบกับ ค่าที่เครื่องมือแยกชั้นกระจากตานว่าจะได้ โดยพบว่าค่าความหนาของชั้นกระจากตานเฉลี่ย เท่ากับ 161 ± 38 มิลลิเมตร (เทียบกับ 160 ในโครเมตรของค่าที่เครื่องมือคาดว่าจะได้), เส้นผ่าศูนย์กลางของชั้นกระจากตานเฉลี่ย เท่ากับ 9.00 ± 0.64 มิลลิเมตรในแนวตั้ง และ 8.94 ± 0.54 มิลลิเมตรในแนวนอน (เทียบกับ 9.00 มิลลิเมตร ของค่าที่เครื่องมือคาดว่าจะได้), ความยาวของชั้นกระจากตานเฉลี่ยเท่ากับ 4.75 ± 0.84 มิลลิเมตร และระยะห่างจากชั้นกระจากตานถึงขอบของรูม่านตาเฉลี่ย เท่ากับ 3.35 ± 0.61 มิลลิเมตร จากการศึกษา ฉบับนี้พบว่าค่าความคลาดเคลื่อนของความหนาของชั้นกระจากตานในการแยกชั้นกระจากตานแต่ละครั้งมีค่าสูง อาจทำให้ความหนาของกระจากตานที่เหลือหลังการผ่าตัดน้อยกว่าที่คำนวณไว้ นำไปสู่ ภาวะแทรกซ้อนที่ร้ายแรงได้

คำสำคัญ : การผ่าตัดแก้ไขสายตาสั้น, ชั้นกระจากตาน, ความหนาของกระจากตานที่เหลือ

สม ศรีวรรณบูรณ์

จดหมายเหตุทางแพทย์ ๔ 2544; 84: 1317-1320

* ภาควิชาจักษุวิทยา, คณะแพทยศาสตร์ศิริราชพยาบาล, มหาวิทยาลัยมหิดล, กรุงเทพ ๔ 10700