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Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited renal disorder caused by
mutations of either PKD1 or PKD2 gene. Cyst formation initiates from a combination of abnormal cell proliferation along
with enhanced fluid secretion. ADPKD is characterized by the progressive enlargement of cysts which destroy the renal
parenchymal cells, resulting in renal failure. Currently, there is no effective treatment for this disease. Interestingly, several
relevant therapeutic effects of herbal medicine relevant to pathogenic process of ADPKD have urged the researchers to
search for potential candidate herb as nutraceutical for ADPKD therapy. Up to now, several natural compounds, such as
triptolide, curcumin, ginkolide B, and steviol (stevia extract) have been shown to be able to retard cyst progression in
ADPKD. The detailed mechanism of these compounds showed that triptolide enhanced calcium restoration, curcumin
inhibited ERK & p-STAT 3 pathways, ginkolide B inhibited Ras/MAPK pathway, and steviol activated AMPK, which inhibited
CFTR channel and mTOR pathway in cell and mouse models of PKD. In addition, they are currently in preclinical and clinical
studies, respectively. This review focuses on the pathophysiology of ADPKD and the recent therapeutic approaches, especially
a potential use of nutraceutical for the treatment of autosomal dominant polycystic kidney disease.
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Autosomal dominant polycystic kidney
disease (ADPKD) is the most common form of PKD. It
is inherited in an autosomal dominant pattern and
caused by mutation of either PKD1 or PKD2 gene(1).
PKD1 and PKD2 genes encode polycystin 1 (PC1)
and polycystin 2 (PC2) proteins, respectively. Mutation
of PKD1 gene accounts for 85% of cases and is more
severe than the mutation of PKD2 gene, which is
responsible for only 15% of cases. ADPKD normally
occurs in adulthood with an incidence of 1:400 to 1:1,000
live births(2). The characteristic of ADPKD is the
progression of cysts along the nephron. These
numerous fluid-filled cysts are gradually enlarged and
replaced renal parenchymal cells. ADPKD patients have
a wide range of symptoms including hypertension,
polyuria, back pain, kidney stone, and urinary tract
infection(3,4). These symptoms usually occur in adult at

third and fourth decades of life, and progress to renal
failure that require either dialysis or renal
transplantation.

At present, advancement in the studies
concerning the basic molecular biology of the
disease has revealed that fluid-filled cysts in ADPKD
are formed by abnormal cell proliferation and massive
transepithelial fluid secretion. This knowledge leads to
the therapeutic approaches/targets for ADPKD therapy.
It has been shown that either reducing intracellular
cAMP, inhibiting of cyst-lining epithelial cell
proliferation pathways, or inhibiting transepithelial fluid
secretion could retard renal cyst growth in both non-
orthologous and orthologous animal models of
ADPKD(5). Interestingly, several natural compounds
that are widely used as alternative medicine could reduce
cystogenesis and improve renal function in animal
model of ADPKD(6-9). Due to the fact that cyst formation
and progression involve several complex pathways,
the effective treatment should inhibit or suppress
several pathways in pathogenesis process of ADPKD.
Therefore, target therapy of ADPKD requires the agents
that can selectively target on several molecular
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pathways responsible for ADPKD development and
causes fewer toxic effects on normal cells. This would
be the most effective and ideal drug of choice. This
review will focus on the pathophysiology and the
therapeutic approaches for the treatment of ADPKD.
Moreover, some of the natural compounds that are
proposed to have high potential for the treatment of
ADPKD will be discussed.

The pathophysiology of ADPKD
Pathophysiology of ADPKD is triggered

by the loss of PC1 and/or PC2 functions. PC1 is
composed of extracellular N-terminus, 11 trans-
membrane protein, and intracellular C-terminus. It acts
as a G-protein couple receptor (GPCR) which regulates
signaling pathways involving in the development and
differentiation of renal tubular cells. Whereas PC2
protein acts as a non-selective cation channel (TRP) to
allow calcium influx into the renal tubular cell(10).
PC1 forms a functional complex with PC2 and acts as a
mechanosensor to regulate intracellular calcium
homeostasis. Thus, malfunction of these proteins
causes a low level of intracellular Ca2+ which
subsequently leads to increase cyclic AMP (cAMP)
inside the cells(4,11). The cAMP further stimulates
cAMP-dependent cell proliferation and fluid secretion
in ADPKD.

Several lines of evidence have shown that
the progression of ADPKD involves proliferation of
cyst-lining epithelial cell as well as fluid secretion in
the cyst lumen(12-14). Increasing cAMP levels could
stimulate cell proliferation through cAMP-dependent
B-Raf/MAPK/ERK pathway in PKD mouse model(14,15).
In addition, ERK 1/2 itself was also found to regulate
mTOR activity via inhibition of tuberin protein
(TSC1/TSC2)(16). The mTOR signaling, another cell
proliferation pathway, was upregulated in renal
cyst-lining cells derived from ADPKD patient and
mouse(16,17). In addition, other signaling pathways
such as, canonical Wnt/β-catenin signaling
pathway(18-20), and cyclin-dependent kinase 2 (Cdk2),
cell cycle activator(21,22) have also been reported to
play an important role in cell proliferation in ADPKD
pathogenesis.

One of a key factor of ADPKD pathogenesis
is the hyperfunction of cystic fibrosis transmembrane
conductance regulator (CFTR). It is a phosphorylation-
dependent epithelial chloride channel activated by
cAMP(13). Chloride accumulation in cyst lumen causes
luminal negativity that draws sodium and water
movement in to the cyst. The basolateral side of renal

epithelial cell has many transporters involving chloride
transportation into the cell. Those include sodium
potassium ATPase (Na+-K+ATPase), sodium potassium
two chloride cotransporter 1 (NKCC1), and potassium
channel KCa 3.1(23), whereas the apical membrane
contains chloride channels such as CFTR(24) and calcium
activated chloride channel (CaCC)(25). Trans-epithelial
chloride secretion involves chloride entry step via
basolateral NKCC1 and exit step mostly via apical CFTR
chloride channel which is activated by cAMP levels(26).

Therapeutic approaches in ADPKD
Most of ADPKD patients die with disease

complications, especially end-stage renal disease(3).
Therefore, the goals for ADPKD intervention are
reduction of morbidity, mortality, and increasing life
span. At present, therapy of ADPKD patients are the
supportive and symptomatic treatments including
anti-hypertensive drugs, analgesic drugs for alleviating
pain, antibiotics for preventing cyst infection, renal
hemodialysis and kidney transplantation for
maintaining body homeostasis(4,27). Using both ortho-
logous and non-orthologous animal models of ADPKD,
it was shown that there are many promising candidate
drugs which inhibit cyst progression and improve
renal function(16,28). Currently, several drugs have been
approved in preclinical trials and entered human clinical
trials(5,29).  At least, three promising approaches/targets
including inhibition of cAMP such as vasopressin V2
receptor antagonists and somatostatin analogs,
inhibition of cell proliferation such as mTOR inhibitors,
and inhibition of fluid secretion such as CFTR inhibitors
are in clinical studies and could represent the potential
therapy of ADPKD.

Inhibition of cAMP
It is known that binding of aginine vaso-

pressin peptide (AVP) to its V2 receptor at collecting
duct stimulates adenylyl cyclases (AC) resulting in an
increase in cAMP levels(30). An increase in AVP level is
thought to stimulate cyst growth and plays a role in
cyst progression in PKD(31). In preclinical trials,
inhibition of AVP V2 receptor with OPC-31260, V2R
antagonist, reduced cAMP level in renal tissues and
inhibited cyst development in animal models of
ADPKD (Pkd2WS25/-)(32). In addition to OPC-31260, OPC-
41061 tolvaptan (an effective of V2 antagonist) potently
reduced renal cyst progression in animal model of PKD
and had specificity to human disease rather than other
species(30).

Somatostatins, a peptide hormone-secreted
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by pancreatic delta cells act on SST2 receptors (G
i
-

coupled receptor) which inhibits AC activity and cAMP
production in both kidney and liver(33). Octreotide, a
long-acting somatostatin analogue, decreased cAMP
levels resulting in suppression of cyst growth in kidney
and liver of pck rats(34). The results from pilot studies
provided the opportunity for octreotide and lanreotide
that are currently ongoing in preclinical and clinical
trials for the treatment of polycystic kidney disease
(PKD) and polycystic liver disease (PLD).

Inhibition of cell proliferation
mTOR is a serine-threonine kinase involved

in the stimulation of cell proliferation and cell growth.
Loss of PC1 function in ADPKD leads to increase in
Rheb protein action, resulting in the activation of
mTOR pathway and increased cell proliferation of cyst-
lining epithelial cells. Rapamycin, a mTOR inhibitor,
significantly slowed cyst growth in a non-orthologous
animal model of PKD(35,36). In addition, the derivatives
of rapamycin have been shown to slow cyst growth
in animal models of PKD. Currently, clinical trials of
rapamycin and its analogs (everolimus) are in process.

Inhibition of fluid secretion
CFTR inhibitors (thaiazolidinone and

hydrazide-containing compounds) have been shown
to slow cyst enlargement in MDCK cyst growth model,
embryonic kidney organ culture, and PKD mouse
model(28,37). In addition, a KCa3.1 inhibitor, TRAM-34,
was also found to inhibit transepithelial chloride
secretion in an acute phase of MDCK cell monolayers,
in normal human kidney (NHK), and ADPKD cells.
Interestingly, it also retards MDCK cyst growth and
cyst formation. However, the efficacy of KCa3.1
inhibitors needs to be further determined in animal model
of PKD(38).

Nutraceuticals for the treatment of ADPKD
Several natural products from herbs or plants

are now widely used as ingredients in pharmaceutical
agent and alternative medicine(39). For ADPKD
treatment, most of the current candidate drugs were
synthetic compounds. Since some natural compounds
seem to exert their effectson several pathways to inhibit
PKD pathogenesis, thus, it is interesting to search for
the natural compounds that have broad inhibition
efficacy and high potency for the therapy of PKD
pathogenesis. More importantly, those compounds
should not produce any toxic or harmful to normal cells.
Indeed, some natural plant-derived compounds such

as triptolide, curcumin, ginkolide B, and steviol were
found to have potency to slow renal cyst growth in cell
and animal models of ADPKD and now some of them
are in clinical trials.

Triptolide
Triptolide, a natural Chinese herb, is isolated

from the medicinal vine, Tripterygium wilfordii Hook
F, which is used in traditional Chinese medicine. It has
anti-inflammatory and anti-cancer effects(40,41). The
recent studies reported that triptolide attenuated cyst
growth in neonatal Pkd1 mice by inducing calcium
release through a PC2-dependent pathway(42,43).
Moreover, the study using triptolide in adult transition
Pkd1 mice found that triptolide slowed cyst growth
and improved renal function(6). At present, triptolide is
investigated in clinical study.

Curcumin
Curcumin, a polyphenol diferuloylmethane, is

extracted from Curcuma longa plant. It was found to
have multiple effects including anti-inflammation,
antioxidation, and anti-proliferation(44,45). Recent study
also reported that curcumin inhibited renal cystogenesis
by suppressing cell proliferation pathways (ERK, p-
S6, p-STAT3) in both MDCK cyst and Pkd1-deletion
mouse(8,46).

Ginkolide B
Ginkolide B, a natural compound, derived from

Ginkgo biloba, which is used as a traditional medicine
in China. It was found to have anti-cancer and anti-
inflammatory effect s(47).  Similarly, ginkolide B has been
shown to inhibit cyst growth in MDCK cyst model and
in Pkd1 knockout mice through reduction of Ras/
MAPK pathway(9).

Stevioside and its derivative (steviol)
Stevioside is a natural compound extracted

from Stevia Rebuadiana plant. It is 300 times sweeter
than sucrose. It is degraded by intestinal microflora to
its aglycone, steviol, and is taken up into the blood
circulation(48). The biological activity studies of
stevioside and steviol revealed that they have several
therapeutic properties including anti-hypertensive(49),
anti-hyperglycemic(50), anti-inflammatory(51), and
anti-diarrheal effect(52), and they also enhance muscle
recovery from injury(53). In addition, they exert inhibitory
effect on renal organic anion transporter(54,55) which
could delay an excretion of therapeutic drug resulting
in enhancing its efficacy. Our recent studies revealed
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that steviol and its derivatives reduced MDCK cyst
formation and growth through the direct inhibition of
CFTR activity and promotion of protreasome-mediated
CFTR degradation(56). More important, stevioside and
steviol also retarded cystogenesis and improved renal
function in Pkd1-/- mice by activation of AMP-activated
protein kinase which inhibited CFTR and mTOR/S6K
protein expression(7). Because steviol can effectively
inhibit several pathways in pathogenesis of ADPKD
with no toxic effect at low dose, it seems to be a novel
compound for ADPKD therapy. However, further
study in modifying the structure of steviol is needed
to minimize its effective dose.

Conclusion
Autosomal dominant polycystic kidney

disease is a common genetic renal progressive disease,
which could lead to end-stage renal failure, and there is
no effective intervention presently. Several drugs are
under clinical studies including vasopressin
antagonists, somatostatin analogs, and mTOR
inhibitors. Interestingly, many natural compound such
as triptolide, curcumin, ginkgolide B, and steviol that
were shown to have potency to slow cyst growth and
some can improve renal function are in preclinical and
clinical trials. Taken together, it is convincing that the
combination therapy between drug and natural
compound might be an alternative way to increase
the therapeutic efficacy of ADPKD. However, this
approach needs further clinical investigation for the
benefit versus the side effect.

What is already known on this topic?
The previous studies reported the general

concept of pathology and the treatment of autosomal
dominant polycystic kidney disease. Some studies
showed the effect of natural compounds for inhibiting
cyst progression in polycystic kidney disease.

What this study adds?
This review focuses on the pathophysiology,

the therapeutic approaches, and the natural
compounds used in autosomal dominant polycystic
kidney disease. In addition, the potent nutraceuticals
and the detailed mechanisms for ADPKD therapy were
summarized and indicated here.
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