

The Role of Prostacyclin (PGI₂) and Thromboxane A₂ (TXA₂) in Pathogenesis of Dengue Hemorrhagic Fever (DHF)

CHAWALIT PREEYASOMBAT, M.D.*,
ARPORN SRIPHAPRADANG, B.Sc.**, SUPORN TEEPONGKARUNA, M.D.*,
LULIN CHOUBTUM, B.Sc.**

Abstract

In previous studies it has been demonstrated that the levels of plasma 6-keto-prostaglandin F_{1α} (6-K-PGF₁), the stable metabolite of PGI₂ were elevated in DHF patients during shock. In this study it is hypothesized that excessive PGI₂ production plays a very important role in developing serious clinical manifestations of dengue shock syndrome (DSS) patients. In addition, an attempt was made to determine whether TXA₂ has any significant role in such patients. Plasma 6-K-PGF₁ and thromboxane B₂ (TXB₂), the stable metabolites of TXA₂ were determined in 43 normal healthy children (NC) and 54 DHF patients without shock (DHF-N) and 33 DHF patients with shock (DHF-S). Subjects aged between 2 and 14 years. Plasma 6-K-PGF₁ and TXB₂ were measured by radioimmunoassay and the ratio of TXB₂/6-K-PGF₁ were also calculated. In 43 NC the values of plasma TXB₂, 6-K-PGF₁ and TXB₂/6-K-PGF₁ ratio were (mean \pm SE) 372.3 \pm 17.1, 150.1 \pm 2.4 and 2.52 \pm 0.12 pg/ml, respectively. In 54 DHF-N patients the corresponding values were 409.1 \pm 16.0, 278.4 \pm 11.6 and 1.54 \pm 0.06 pg/ml; whereas those in 33 DHF-S patients were 254.3 \pm 26.2, 349.1 \pm 20.5 and 0.757 \pm 0.073 pg/ml, respectively. Plasma 6-K-PGF₁ levels of DHF-N and DHF-S patients were significantly greater than those in normal children ($p < 0.001$, $p < 0.01$ respectively). The plasma 6-K-PGF₁ levels seem to be greater in DHF-S patients than in the DHF-N patients, however the difference in values were not statistically significant ($p > 0.05$). These findings indicate that plasma PGI₂ level is significantly increased in DHF particularly during shock. Plasma TXB₂ levels of DHF-N had no significant statistical difference from those of NC ($p > 0.05$); however, those in DHF-S patients were significantly lowered ($p < 0.001$) than those of NC and DHF-N patients. The findings suggest the important role of TXA₂ to compensate for excessive PGI₂ secretion in DHF patients. The failure or inadequate TXA₂ production may eventually lead to shock. The ratios were significantly reduced in both DHF-N and DHF-S patients when compared to those of NC ($p < 0.001$ both). The ratio in DHF-S patients was also significantly lowered than that in DHF-N patients ($p < 0.001$). It is suggested that the imbalance between TXA₂ and PGI₂ production exists during DHF infection. The more reduction of plasma TXA₂/PGI₂ ratio leads to more overt and serious clinical manifestations of the disease.

Key word : Prostacyclin, Thromboxane, Dengue Hemorrhagic Fever, Dengue Shock Syndrome

* Department of Pediatrics,

** Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand.

Prostacyclin (PGI_2) and thromboxane A_2 (TXA_2) are prostanoids which exert antagonistic actions on vessel walls and blood platelets, and thus play very important roles in vascular homeostasis and blood supply. PGI_2 is the major arachidonic product of vascular endothelium^(1,2); however, it can be secreted by other tissues, i.e. vascular smooth muscle⁽²⁾, and lymphocytes⁽³⁾ by interaction with platelets. The biologic actions of prostacyclin include vasodilatation⁽⁴⁻⁶⁾, hypotension⁽⁷⁾, platelet aggregation inhibition^(4,6), opposition of leukocytes migration to damaged vascular endothelium^(7,8), inflammatory reaction⁽⁹⁻¹¹⁾, increased vascular permeability^(11,12), increased organ blood flow and vascular capacity^(12,13), and fibrinolytic activity⁽⁸⁾. Clinical manifestations of patients with dengue hemorrhagic fever mimic those of PGI_2 hypersecretion, i.e. fever, extravasation of fluid to the intracellular space leading to organ edema or congestion, hypovolemic hypotension and shock, platelet dysfunction, and hemorrhagic manifestations. In a previous study, it was shown that plasma PGI_2 levels were elevated in dengue hemorrhagic fever with shock⁽¹⁴⁾.

TXA_2 is the major arachidonic acid metabolite of platelets⁽⁴⁾; however, it can be secreted by vascular tissues⁽⁵⁾. This prostanoid exerts opposite actions to prostacyclin on blood vessels and platelets⁽¹⁴⁾, therefore it may play certain roles in dengue shock syndrome. Moncada and Vane⁽⁶⁾ have pointed out that an equilibrium between these 2 major prostanoids is an important role in the maintenance of vascular tone and platelet homeostasis.

The purpose of this study is to determine the roles of prostacyclin and thromboxane A_2 in patients with dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS).

MATERIAL AND METHOD

All subjects of both sexes aging from 2 to 14 years were included in this study. They were divided into 3 groups.

Group I 43 normal children (NC) who were healthy and afebrile.

Group II 54 patients who were admitted to Ramathibodi Hospital with clinical diagnosis of dengue hemorrhagic fever (DHF-N). Their blood samples were obtained during normotension.

Group III 33 dengue hemorrhagic fever patients, whose blood samples were taken during

impending shock (DHF-S), i.e. systolic blood pressure was below 90 mmHg and pulse pressure was less than 20 mmHg.

All patients had serology positive for acute dengue virus infection interpreted from two blood samples determinated 2 weeks apart. None of the subjects had received corticosteroids or nonsteroidal antiinflammatory drugs before blood collections.

Methods

Blood samples were collected in tubes containing EDTA and indomethacin. Plasma was separated immediately and stored at -20°C until analysed. Plasma samples were determined for 6-keto prostaglandin $F_1\alpha$ (6-K-PGF $_1$), the stable metabolite of PGI_2 and thromboxane B_2 (TXB_2), the stable metabolite of TXA_2 by radioimmunoassay method following the same technique we previously used⁽¹⁴⁾.

RESULTS

The mean \pm SE of plasma TXB_2 levels of 43 NC, 54 DHF-N, and 33 DHF-S were shown in scattogram (Fig. 1). The values (mean \pm SE) were 372.3 ± 17.06 , 409.1 ± 16.0 and 254.3 ± 26.2 pg/ml, respectively. The mean plasma TXB_2 levels of 54

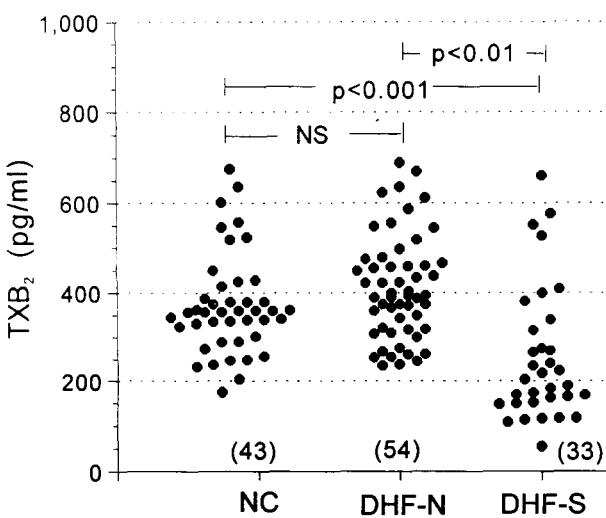


Fig. 1. Plasma thromboxane B2 in normal children and in patients with DHF.

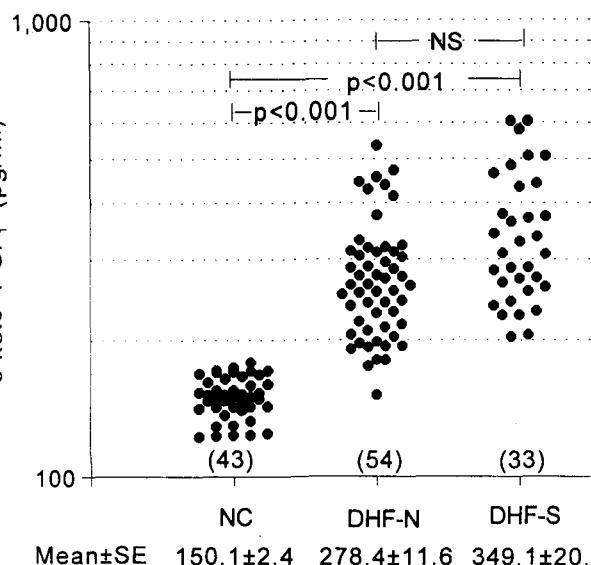


Fig. 2. Plasma 6-keto PGF₁ in normal children and in patients with DHF.

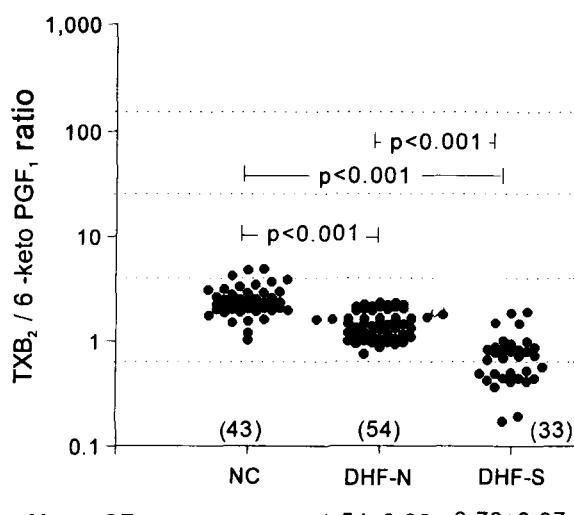


Fig. 3. Plasma TXB₂/6-keto PGF₁ ratio in normal children and in patients with DHF.

DHF-N patients and 43 NC were not statistically different. In contrast, the mean plasma TXB₂ levels of 33 DHF-S patients were significantly lower than those of 43 NC and 54 DHF-N patients ($p < 0.001$).

The mean \pm SE of plasma 6-K-PGF₁ levels (mean \pm SE) of 43 NC, 54 DHF-N and 33 DHF-S (Fig. 2) were 150.1 ± 2.4 , 278.4 ± 11.6 and 349.1 ± 20.5 pg/ml, respectively. It was obvious that the plasma 6-K-PGF₁ levels in both groups of dengue hemorrhagic fever patients were statistically higher than those of normal children ($p < 0.001$). The levels were even higher in DHF-S than those of DHF-N; however, they were not significantly different.

The plasma TXB₂/6-K-PGF₁ ratios of 3 groups of subjects were demonstrated in Fig. 3. The ratios of DHF-N and DHF-S patients were significantly lower than those of normal children ($p < 0.001$) and the ratio of DHF-S patients was significantly lower than those of DHF-N patients ($p < 0.001$).

DISCUSSION

It was demonstrated in this study that plasma 6-K-PGF₁ levels were significantly increased in patients with dengue hemorrhagic fever

particularly during impending shock. The plasma TXB₂ levels were not changed in dengue hemorrhagic fever without shock; however, the levels were significantly decreased during impending shock. In shock state the plasma levels of 6-K-PGF₁ were definitely increased, whereas the plasma TXB₂ levels were significantly decreased. The findings had pointed out the opposite role of TXA₂ and PGI₂ in pathogenesis of dengue hemorrhagic fever with shock. The ratios of plasma TXB₂ and PGI₂ levels were reduced in dengue hemorrhagic fever patients which were more prominent during state of shock. The findings support the pathogenesis that equilibrium between TXA₂ and PGI₂ is an important role in maintenance of vascular tone and blood pressure regulation.

Now the questions come up that how and why the plasma TXA₂ levels were declined, whereas the plasma PGI₂ levels were elevated in dengue hemorrhagic fever during impending shock. The explanations for this discrepancy are as follow. Firstly, interferon, a cytokine produced by activated lymphocytes, monocytes and neutrophils during acute viral infection has been shown to enhance vascular endothelial PGI₂ synthesis without affecting platelet aggregation and TXA₂ production(15).

This can result in decreased plasma TXA₂/PGI₂ ratio in patients with dengue hemorrhagic fever. Secondly, several mediators released from activated blood cell components such as platelets and leucocytes during dengue virus infection cause leucocyte and macrophage adherence to blood vessel walls and subsequently stimulate the adjacent intact vascular endothelia to synthesize PGI₂(16-24). Moreover, some of prostaglandin endoperoxides (PGG₂, PGH₂) released from activated platelets and leucocytes are capable of incorporation into PGI₂ by the intact vascular endothelium(25,26). This may cause further elevation of plasma PGI₂ during dengue virus infection. In contrast, the circulating prostaglandin endoperoxide trapped by the platelets cannot corporate into TXA₂ although it may be corporated into lipoxygenase products(26). Thirdly, thrombocytopenia during the course of dengue virus infection has limited ability of the platelets to release TXA₂ into systemic circulation. Such events can play a role in decreased plasma TXB₂/6 K-PGF₁ ratio. Fourthly, lymphocytes which contain little or no cyclo-oxygenase activity; but PGI₂ synthase activity can convert prostaglandin endoperoxides which were released from activated platelets and other related cells into PGI₂(3). This ability of circulating lymphocytes to secrete PGI₂ but not of TXA₂ causes further reduction in plasma TXB₂/6-K-PGF₁ ratios. All of these evidences tend, therefore, to explain the decreased plasma TXB₂/6-K-PGF₁ ratio in dengue hemorrhagic fever patients especially during hypotensive crisis.

In previous study(14), it was hypothesized that excessive PGI₂ production in DHF is the protected mechanism against further endothelial injury(15) and platelet aggregation inhibition by various mediators. Excessive PGI₂ production is expected to prevent thrombosis and enhance thrombolysis. However, excessive PGI₂ production with decreased plasma TXA₂ levels (reduced plasma TXA₂/PGI₂ ratio) can adversely cause generalized vasodilatation, organ congestion and failure, systemic hypotension, profound bleeding, and shock. The extravasation fluid leakage would, therefore, result in dehydration and hemoconcentration. Excessive fluid replacement without correction of decreased plasma TXA₂/PGI₂ ratio is a hazardous procedure leading to progressive extravascular

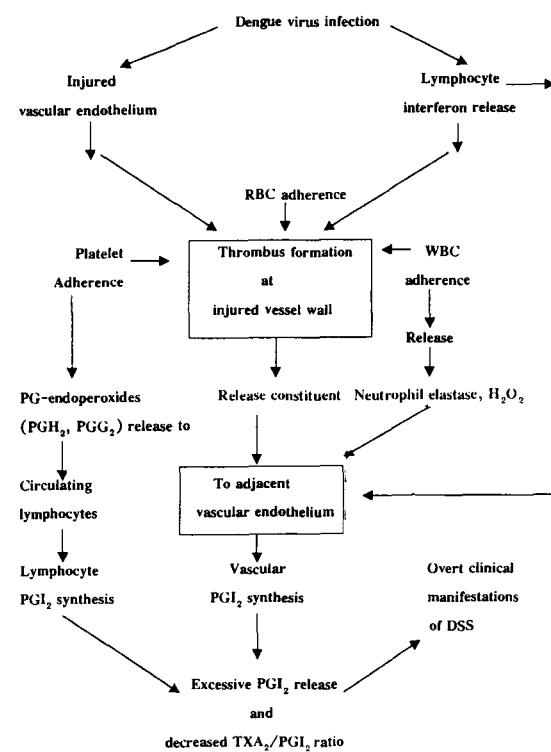


Fig. 4. The role of PGI₂ in the pathogenesis of dengue shock syndrome.

leakage of fluid resulting in organ congestion, edema and failure-particularly the liver, heart, lungs and brain. These events can explain the serious complications such as pericardial, pleural and abdominal effusions, liver and cardiac congestion, as well as pulmonary and brain edema found in terminal state of dengue hemorrhagic fever after huge fluid replacement therapy. The correction of decreased TXA₂/PGI₂ ratios seems to be theoretically more effective than high molecular fluid replacement (such as plasma or dextran) in management of dengue hemorrhagic fever patients during shock state. Fig. 4 is our proposed pathogenesis concerning the role of PGI₂ in dengue shock syndrome.

ACKNOWLEDGEMENT

This study is supported by Ramathibodi Research Grant No.22/1991.

REFERENCES

- Moncada S, Herman AG, Higgs EA, Van JR. Differential formation of prostacyclin (PGX or PGI₂) by layer of arterial wall : an explanation for the antithrombotic properties of vascular endothelium. *Thromb Res* 1977; 11: 323-44.
- Dewitt DL, Day JS, Sonnenberg WK, Smith WL. Concentrations of prostaglandin endoperoxide synthase and prostaglandin I₂ synthase in the endothelium and smooth muscle of bovine aorta. *J Clin Invest* 1983; 72: 1882-8.
- Wu KK, Papp AC, Manner CE, Hall ER. Interaction between lymphocytes and platelets in the synthesis of prostacyclin. *J Clin Invest* 1987; 79: 1601-6.
- Metha J, Roberts A. Human vascular tissues produce thromboxane as well as prostacyclin. *Am J Physiol* 1983; 244: R839-44.
- Moncada S, Vane JR. Pharmacology of endogenous roles of prostaglandin endoperoxides, thromboxane A₂, and prostacyclin. *Pharmacol Rev* 1979; 30: 293-331.
- Moncada S, Vane JR. Arachidonic acid metabolites and the interactions between platelets and blood vessel walls. *N Engl J Med* 1979; 300: 1142-7.
- Jones G, Hurley JV. The effect of prostacyclin on the adhesion of leukocytes to injured vascular endothelium. *J Pathol* 1984; 142: 51-9.
- Utsunomiya T, Krausz MM, Valeri CR, Shepro D, Hechtman HB. Treatment of pulmonary embolism with prostacyclin. *Surgery* 1980; 88: 25-30.
- Vane JR. Prostaglandins as mediators of inflammation. *Adv Prostaglandin Thromboxane Res* 1976; 2: 791-801.
- Higgs GA, Moncada S, Salmon JA, Seager K. The source of thromboxane and prostaglandins in experimental inflammation. *Brit J Pharmacol* 1983; 79: 863-8.
- Kuehl FA Jr, Egan RW. Prostaglandins, arachidonic acid and inflammation. *Science* 1980; 210: 978-84.
- Fulghum TG, Dimarco JP, Supple EW, et al. Effect of prostacyclin on vascular capacity in the dog. *J Clin Invest* 1985; 76: 999-1006.
- Echternkamp SF, Davis JO, Freeman RH, et al. Effects of prostacyclin on hepatic vasculature and metabolism of renin in conscious dogs. *Am J Physiol* 1982; 243: H584-9.
- Preeyasombat C, Bunnag P, Sirinavin S, et al. Plasma prostacyclin (PGI₂) in dengue hemorrhagic fever. *Southeast Asian J Trop Med Public Health* 1990; 21: 444-8.
- Eldor A, Fridman R, Vlodavsky I, Hy-Am E, Fuks Z, Pamet A. Interferon enhances prostacyclin production by cultured vascular endothelial cells. *J Clin Invest* 1984; 73: 251-7.
- Weksler BB, Ley CW, Jaffe EA. Stimulation of endothelial cell prostacyclin production by thrombin, trypsin and the ionophore A23187. *J Clin Invest* 1978; 62: 923-30.
- McIntyre TM, Zimmerman GA, Satoh K, et al. Cultured endothelial cells synthesize both platelet activating factor and prostacyclin in response to histamine, bradykinin and adenosine triphosphate. *J Clin Invest* 1985; 76: 271-80.
- LeRoy EC, Ager A, Cordon JL. Effects of neutrophil elastase and other proteases on porcine aortic endothelial prostaglandin I₂ production, adenine nucleotide release, and response to vasoactive agents. *J Clin Invest* 1984; 74: 1003-10.
- Harlan JM, Callahan KS. Role of hydrogen peroxide in the neutrophil-mediated release of prostacyclin from cultured endothelial cells. *J Clin Invest* 1984; 74: 442-8.
- Coughlin SR, Moskowitz MA, Zetter BR. Platelet dependent stimulation of PGI₂ synthesis by PDGF. *Nature* 1980; 288: 600-1.
- Acharya SB, MacIntyre DE. Platelet products and vascular PGI₂ production. *Prostaglandins Leukotrienes Med* 1983; 10: 73-81.
- Dejana E, Mantovani A. Stimulation of prostacyclin synthesis in vascular cells by mononuclear cell products. *Blood* 1984; 64: 1280-3.
- Rossi V, Breviario F, Ghezzi P, et al. Prostacyclin synthesis induced in vascular cells by interleukin 1. *Science* 1985; 229: 174-6.
- Dejana E, Balconi G, De Castellarnan C, et al. Prostacyclin production by human endothelial and bovine smooth muscle cells in culture. Effect of repeated stimulation with arachidonic acid, thrombin and ionophore A23187. *Biochem Biophys Acta* 1983; 750: 261-8.
- Marcus AJ, Weksler BB, Jaffe EA. Synthesis of PGI₂ from platelet derived endoperoxide by cultured human endothelial cells. *J Clin Invest* 1980; 66: 979-86.
- Schafer AI, Crawford DD, Gimbrone MA Jr. Unidirectional transfer of prostaglandin endoperoxides between platelets and endothelial cells. *J Clin Invest* 1984; 73: 1105-12.

บทบาทของ prostacyclin (PGI₂) และ thromboxane A₂ (TXA₂) ต่อการเกิดโรคไข้เลือดออก

ชวัลิต ปริยาสมบัติ, พ.บ.*, สุพร ตรีพงษ์กรุณา, พ.บ.*
อาการณ์ ศรีพระประเดช, วท.บ.**, ลุลิน ขอบธรรม, วท.บ.**

จากการศึกษาครั้งก่อนพบว่าระดับ 6-keto-prostaglandin F₁α (6-K-PGF₁) ซึ่งเป็น metabolite ของ PGI₂ ในเลือดเพิ่มขึ้นในผู้ป่วยไข้เลือดออกที่อยู่ในภาวะซื้อก ฉะนั้นจึงบ่งชี้ว่าการสร้าง PGI₂ ในปริมาณมากผิดปกติน่าจะเป็นสาเหตุสำคัญที่ทำให้ผู้ป่วยไข้เลือดออกมีอาการแสดงรุนแรง ในการศึกษาครั้งนี้คณผู้ร้ายงานต้องการทราบบทบาทของ TXA₂ ในการเกิดโรคไข้เลือดออก โดยการวัดระดับ 6-K-PGF₁ และ thromboxane B₂ (TXB₂) ซึ่งเป็น metabolite ของ TXA₂ ในเลือดของเด็กปีติ 43 ราย, เด็กที่ป่วยด้วยโรคไข้เลือดออกที่ไม่มีอาการซื้อก (DHF-N) 54 ราย และที่มีอาการซื้อก (DHF-S) 33 ราย เด็กทั้ง 3 กลุ่มมีอายุอยู่ระหว่าง 2-14 ปี ผลการศึกษาพบว่าเด็กปีติมีระดับ TXB₂, 6-K-PGF₁ และอัตราส่วนระหว่าง TXB₂/ 6-K-PGF₁ ได้ค่า (ค่าเฉลี่ย \pm ความคลาดเคลื่อนมาตรฐาน) 372 ± 17.1 , 150.1 ± 2.4 และ 2.52 ± 0.12 pg/ml ตามลำดับ สำหรับผู้ป่วย DHF-N 54 ราย ได้ค่าดังกล่าว 409.1 ± 16.0 , 278.4 ± 11.6 และ 1.54 ± 0.06 pg/ml ในผู้ป่วย DHF-S 33 ราย ได้ค่า 254.3 ± 26.2 , 349.1 ± 20.5 , และ 0.757 ± 0.073 pg/ml ตามลำดับ ระดับ 6-K-PGF₁ ในเลือดของผู้ป่วย DHF-N และ DHF-S สูงกว่าในเด็กปีติอย่างชัดเจน ($P < 0.001$, $P < 0.01$ ตามลำดับ) ระดับ 6-K-PGF₁ ในผู้ป่วย DHF-S จะสูงกว่าผู้ป่วย DHF-N แต่ยังไม่มีความแตกต่างทางสถิติชัดเจน ($P > 0.05$) ผลการศึกษาบ่งชี้ว่า ระดับ PGI₂ เพิ่มขึ้นในเลือดของผู้ป่วยไข้เลือดออกโดยเฉพาะอย่างยิ่งในภาวะซื้อก ส่วนระดับ TXB₂ ในผู้ป่วย DHF-S และเด็กปีติไม่แตกต่างกันอย่างมีนัยสำคัญ ($P > 0.05$) แต่ถึงกระนั้นก็ตามระดับ TXB₂ ในผู้ป่วย DHF-S ที่ยังต่ำกว่าในเด็กปีติและ DHF-N ($P < 0.001$) จึงสรุปได้ว่า TXA₂ ที่หลังเพิ่มขึ้นในโรคไข้เลือดออกนั้นเพื่อต่อต้านฤทธิ์ของ PGI₂ ไม่ให้รุนแรงเกิน เมื่อได้ที่การหลังของ TXA₂ ไม่เพียงพอต่อการเพิ่มขึ้นอย่างมากคลาลของ PGI₂ แล้วผู้ป่วยก็จะมีอาการซื้อก อัตราส่วนระหว่างระดับ TXB₂/6-K-PGF₁ ในเลือดจะลดลงอย่างชัดเจนในผู้ป่วย DHF-N และลดลงอย่างมากในผู้ป่วย DHF-S เมื่อเทียบกับเด็กปีติ การเลี้ยดลุ่มระหว่างการสร้าง TXA₂ และ PGI₂ ทำให้เกิดอาการแสดงของไข้เลือดออก อาการซื้อกนี้เนื่องจากอัตราส่วนดังกล่าวลดลงมาก

คำสำคัญ : โรคไข้เลือดออก, โปรดสต้าชัคคลิน, ธรรมบกษาเซน

* ภาควิชาภารเวชศาสตร์,

** สำนักงานวิจัย, คณะแพทยศาสตร์โรงพยาบาลรามาธิบดี, มหาวิทยาลัยมหิดล, กรุงเทพฯ 10400